Vol. 32 No. 4 (2022): Coming Issue
Papers

Spin-current in a Magnetic Semiconductor Tunnel Junction: Effect of External Bias Voltage

Hoai T. L. Nguyen
Institute of Physics

Published 06-09-2022

Keywords

  • spin-orbit interaction,
  • III-V semiconductor,
  • magnetic tunnel junction,
  • spin-current,
  • multi-band transport,
  • transfer matrix,
  • k.p method
  • ...More
    Less

How to Cite

Nguyen, T. L., Drouhin, H.-J., & hoai, nguyen. (2022). Spin-current in a Magnetic Semiconductor Tunnel Junction: Effect of External Bias Voltage. Communications in Physics, 32(4). https://doi.org/10.15625/0868-3166/17046

Funding data

Abstract

This paper investigates spin-current transport in a GaMnAs/GaAs/GaMnAs magnetic semiconductor tunnel junctions under applied bias voltages. The 30-band k.p approach is used to describe the materials within the heterostructure, incorporating both spin-orbit and exchange interactions. We use the transfer-matrix formalism to derive numerical solutions for the wave functions. At specific bias values, we calculate the polarization of the spin-current component along the z direction of the structure. We show oscillations of the two spin-current components perpendicular to the magnetization with equal polarization amplitude and characteristic period. The polarization amplitude varies around 10%, reflecting the typical polarization in such type of material. The oscillation period - which relates to the Larmor frequency for spin precession - increases with the bias voltage values.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159 (1996) L1-L7. DOI: https://doi.org/10.1016/0304-8853(96)00062-5
  2. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54 (13) (1996) 9353. DOI: https://doi.org/10.1103/PhysRevB.54.9353
  3. M. Elsen, O. Boulle, J. -M. George, H. Jaffres, R. Mattana, V. Cros, A. Fert, A. Lemaitre, R. Giraud and G. Faini, Spin transfer experiments on (Ga, Mn) As / (In, Ga) As / (Ga, Mn) As tunnel junctions, Phys. Rev. B 73 (2006) 035303. DOI: https://doi.org/10.1103/PhysRevB.73.035303
  4. I. M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel and P. Gambardella, Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer, Nat. Mater. 9 (2010) 230. DOI: https://doi.org/10.1038/nmat2613
  5. Y. Wang, D. Zhu, Y. Wu, Y. Yang, J. Yu, R. Ramaswamy, R. Mishra, S. Shi, M. Elyasi, K. -L. Teo, Y. Wu and H. Yang, Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques, Nat. Commun. 8 (2017) 1364. DOI: https://doi.org/10.1038/s41467-017-01583-4
  6. M. Jiang, H. Asahara, S. Sato, T. Kanaki, H. Yamasaki, S. Ohya and M. Tanaka, Efficient full spin–orbit torque switching in a single layer of a perpendicularly magnetized single-crystalline ferromagnet, Nat. Commun. 10 (2019) 2590. DOI: https://doi.org/10.1038/s41467-019-10553-x
  7. A. Manchon, J. Zelezny, I. M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello and P. Gambardella, Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems, Rev. Mod. Phys. 91 (2019) 035004. DOI: https://doi.org/10.1103/RevModPhys.91.035004
  8. S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami and S. N. Piramanayagam, Spintronics based random access memory: a review, Mater. Today 20(9) (2017) 530. DOI: https://doi.org/10.1016/j.mattod.2017.07.007
  9. E. I. Rashba, Spin currents in thermodynamic equilibrium: The challenge of discerning transport currents, Phys. Rev. B 68 (2003) 241315(R). DOI: https://doi.org/10.1103/PhysRevB.68.241315
  10. H. -J. Drouhin, G. Fishman and J. E. Wegrowe, Spin currents in semiconductors: Redefinition and counterexample, Phys. Rev. B 83 (2011) 113307. DOI: https://doi.org/10.1103/PhysRevB.83.113307
  11. P. M. Haney and M. D. Stiles, Current-induced torques in the presence of spin-orbit coupling, Phys. Rev. Lett. 105 (2010) 126602. DOI: https://doi.org/10.1103/PhysRevLett.105.126602
  12. W. Cao, M. Wei-Yuan Tu, J. Xiao and W. Yao, Giant spin transfer torque in atomically thin magnetic bilayers, Chinese Physics Letters 37(10) (2020) 107210. DOI: https://doi.org/10.1088/0256-307X/37/10/107201
  13. N. S. Al-Shameri and H. Dakhlaoui, Spin-current oscillations in diluted magnetic semiconductor multibarrier GaMnAs/GaAs: Role of temperature and bias voltage, Coatings 12(4) (2022) 504. DOI: https://doi.org/10.3390/coatings12040504
  14. N. S. Al-Shameri and H. Dakhlaoui, Numerical investigation of quantum tunneling time and spin-current density in GaAs/GaMnAs/GaAs barriers: Role of an applied bias voltage, Physica B 628 (2022) 413555. DOI: https://doi.org/10.1016/j.physb.2021.413555
  15. M. Tanaka, S. Ohya and Pham Nam Hai, Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport, App. Phys. Rev. 1 (2014) 011102. DOI: https://doi.org/10.1063/1.4840136
  16. D. To, T. Dang, Hoai Nguyen, V. Safarov, J. George, H. -J. Drouhin and H. Jaffr`es, Spin-orbit currents, spintransfer
  17. torque and anomalous tunneling in III–V heterostructures probed by advanced 30- and 40-bands k.p tunneling methods, IEEE Trans. Magn. 55(7) (2019) 1400707. DOI: https://doi.org/10.1109/TMAG.2019.2894571
  18. Duy-Quang To, Advanced multi-band k.p methods for semiconductor-based spintronics, Ph.D dissertation, Institut
  19. Polytechnique de Paris (2019).
  20. Guy Fishman, Semi-conducteurs: les bases de la th´eorie k.p, Les ´ Edition de l’ ´ Ecole Polytechnique (2010).
  21. S. Richard, F. Aniel and G. Fishman, Energy-band structure of Ge, Si, and GaAs: A thirty-band k.p method, Phys. Rev. B 70 (2004) 235204. DOI: https://doi.org/10.1103/PhysRevB.70.235204
  22. T. L. Hoai Nguyen, H. -J. Drouhin, and G. Fishman, Spin trajectory along an evanescent loop in zinc-blende semiconductors, Phys. Rev. B 80 (2009) 075207. DOI: https://doi.org/10.1103/PhysRevB.80.075207
  23. Y. Ando and T. Ito, Calculation of transmission tunneling current across arbitrary potential barriers, J. Appl. Phys. 61 (1987) 1497. DOI: https://doi.org/10.1063/1.338082
  24. Nguyen Thi Loan and Nguyen Thi Lam Hoai, Hong Duc University Journal of Science, 45 (2019) 95. DOI: https://doi.org/10.51316/jca.2020.015
  25. A. Kalitsov, Spin-polarized current-induced torque in magnetic tunnel junctions, J. Appl. Phys. 99(8) (2006) 08G501. DOI: https://doi.org/10.1063/1.2151796
  26. D. C. Ralph and M. D. Stiles, Spin transfer torques, J. Magn. Magn. Mater. 320 (2008) 1190. DOI: https://doi.org/10.1016/j.jmmm.2007.12.019