Vol. 32 No. 4 (2022): Coming Issue
Papers

Silica-based Photonic Crystal Fiber for Supercontinuum Generation in the Anomalous Dispersion Region: Measurement and Simulation

Bien Chu Van
Yersin Da Lat University, 27 Ton That Tung, Ward 8, Da Lat City, Vietnam
Hieu Van Le
Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam
Chin Hoang Van
Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam
Thao Nguyen Thi
Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam
Van Thuy Hoang
Department of Physics, Vinh University, 182 Le Duan, Vinh City, Vietnam
Dinh Quang Ho
School of Chemistry, Biology and Environment, Vinh University, 182 Le Duan Street, Vinh City, Vietnam
Van Cao Long
Institute of Physics, University of Zielona Góra, Prof. Szafrana 4a, 65-516 Zielona Góra, Poland

Published 25-07-2022

Keywords

  • nonlinear optics,
  • Photonic crystal fiber,
  • anomalous dispersion,
  • supercontinuum generation

How to Cite

Chu, V. B., Le, H. V., Hoang, V. C., Nguyen, T. T., Hoang, V. T., Ho, D. Q., & Cao, L. V. (2022). Silica-based Photonic Crystal Fiber for Supercontinuum Generation in the Anomalous Dispersion Region: Measurement and Simulation. Communications in Physics, 32(4). https://doi.org/10.15625/0868-3166/17121

Abstract

We report on numerical simulation and experimental study of the supercontinuum (SC) generation in the anomalous dispersion region of photonic crystal fiber (PCF). The results show that a flat and stable spectrum with bandwidth of 130 nm around the central pump wavelength was achieved with an input power of 4.0 W. Although the measured spectrum is slightly different from the numerical ones, a good consistency can be recognized in the major sideband positions and spectral width. In addition, the chromatic dispersion of air silica PCF was measured at visible and near-infrared wavelengths using the Mach-Zehnder interferometer configuration and then verified by comparison with simulated results.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. T. Stiehm, R. Schneider, J. Kern, I. Niehues, S. Michaelis de Vasconcellos and R. Bratschitsch, Supercontinuum second harmonic generation spectroscopy of atomically thin semiconductors, Rev. Sci. Instrum. 90 (2019) 083102. https://doi.org/10.1063/1.5100593
  2. H. Wang, C. P. Fleming and A. M. Rollins, Ultrahigh-resolution optical coherence tomography at 1.15 µm using photonic crystal fiber with no zero-dispersion wavelengths, Opt. Express. 15 (2007) 3085. https://doi.org/10.1364/OE.15.003085
  3. C. Poudel and C. F. Kaminski, Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications, J. Opt. Soc. Am. B. 36 (2019) A139. https://doi.org/10.1364/JOSAB.36.00A139
  4. J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes et al., Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity, Opt. Express. 17 (2009) 1447. https://doi.org/10.1364/OE.17.001447
  5. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer and H. Bartelt, Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers, Opt. Express. 19(2011) 3775. https://doi.org/10.1364/OE.19.003775
  6. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth and J. C. Knight, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion, Opt. Express. 19 (2011) 4902. https://doi.org/10.1364/OE.19.004902
  7. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki et al., Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber, Opt. Lett. 34 (2009) 2015. https://doi.org/10.1364/OL.34.002015
  8. J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna and E. Alvarado-Mendez, Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs, Laser Phys. Lett. 10 (2013) 075101. https://doi.org/10.1088/1612-2011/10/7/075101
  9. J. M. Dudley and S. Coen, Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers, Opt. Lett. 27 (2002) 1180. https://doi.org/10.1364/OL.27.001180
  10. N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng et al., Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser, Appl. Phys. Lett. 110 (2017) 061102. https://doi.org/10.1063/1.4975678
  11. Y. Huang, H. Yang, S. Zhao, Y. Mao and S. Chen, Design of photonic crystal fibers with flat dispersion and three zero dispersion wavelengths for coherent supercontinuum generation in both normal and anomalous regions, Results in Phys. 23 (2021) 104033. https://doi.org/10.1016/j.rinp.2021.104033
  12. K. Park, J. Na, J. Kim and Y. Jeong, Numerical study on supercontinuum generation in an active highly nonlinear photonic crystal fiber with anomalous dispersion, IEEE J. Quantum Electron. 56 (2020) 6800109. https://doi.org/10.1109/JQE.2020.2974519
  13. F. R. Arteaga-Sierra, A. Antikainen and G. P. Agrawal, Dynamics of soliton cascades in fiber amplifiers, Opt. Lett. 41 (2016) 5198. https://doi.org/10.1364/OL.41.005198
  14. C. Lei, A. Jin, R. Song, Z. Chen and J. Hou, Theoretical and experimental research of supercontinuum generation in an ytterbium-doped fiber amplifier, Opt. Express. 24 (2016) 9237. https://doi.org/10.1364/OE.24.009237
  15. T. Li, Optical Fiber Communications: Fiber Fabrication, Academic Press (San Diego), 1985.
  16. V. C. Lanh, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long et al., Supercontinuum generation in photonic crystal fibres with core filled with toluene, J. Opt. 19 (2017) 125604. https://doi.org/10.1088/2040-8986/aa96bc
  17. H. Saghaei, P. Elyasi and R. Karimzadeh, Design, fabrication, and characterization of Mach-Zehnder interferometers, Photonics Nanostructures - Fundam. Appl. 37 (2019) 100733. https://doi.org/10.1016/j.photonics.2019.100733
  18. H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh et al., Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water-ethanol mixture, Opt. Commun. 407 (2018) 417. https://doi.org/10.1016/j.optcom.2017.09.059
  19. Mode Solution, Lumerical Solutions, https://www.lumerical.com/tcad-products/mode/
  20. G. P. Agrawal, Nonlinear Fiber Optics 5th edition, Academic Press (Oxford), 2013. https://doi.org/10.1016/B978-0-12-397023-7.00011-5
  21. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg et al., Anomalous dispersion in a solid, silica-based fiber, Opt. Lett. 31 (2006) 2532. https://doi.org/10.1364/OL.31.002532
  22. F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise and W. G. Clark, Generation of 50-fs, 5-nJ pulses at 1.03 µm from a wave-breaking-free fiber laser, Opt. Lett. 28 (2003) 0146. https://doi.org/10.1364/OL.28.001365