Vol. 32 No. 4 (2022): Coming Issue

Simple Design of Double-Layer Antireflection Coating for Er-Doped Glass Laser Application

Van Huy Mai
Le Quy Don Technical University
Chi Dung Duong
Department of Optical Devices
Hoang Hai Le
Department of Optical Devices
Linh Khuong Tran
Department of Optical Devices, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi
Alexandre Jaffré
Laboratoire Génie Électrique et Électronique de Paris (GeePs) - CNRS – CentraleSupélec
Emmanuel Blanc
Laboratoire de Physique des 2 Infinis – Irène Joliot-Curie (IJCLab)
Olivier Schneegans
Laboratoire Génie Électrique et Électronique de Paris (GeePs) - CNRS – CentraleSupélec

Published 15-09-2022


  • lasers; erbium-doped glass; antireflection coatings; thin films; refractive index

How to Cite

Mai, V. H., Duong, C. D. ., Le, H. H. ., Tran, L. K. ., Jaffré, A., Blanc, E. ., & Schneegans, O. . (2022). Simple Design of Double-Layer Antireflection Coating for Er-Doped Glass Laser Application. Communications in Physics, 32(4). https://doi.org/10.15625/0868-3166/17137


In an Erbium-doped glass laser resonator, parasitic light oscillations (yielding a lowering of the output laser beam power) may be avoided by deposition of well-adapted antireflection coatings on the edges of the active glass medium. However, towards laser application, efficient double-layers are scarce in literature. Here, we propose a simple design of double-layer (total thickness < 490nm) composed of thin films of MgF2 and Al2O3, materials that are easy to deposit by electron beam evaporation. Such coating design allows a calculated reflectance to be lower than 0.01% in the considered 1530-1570nm Near-Infrared range.


Download data is not yet available.


Metrics Loading ...


  1. B. Denker and E. Shklovsky, Handbook of solid-state lasers: materials, systems and applications, Elsevier (Amsterdam), 2013.
  2. R. Francini, F. Giovenale, U. Grassano, P. Laporta and S. Taccheo, Spectroscopy of Er and Er–Yb-doped phosphate glasses, Opt. Mater. 13 (2000) 417.
  3. Z. Mierczyk, Selected Papers from International Conference on Optics and Optoelectronics’ 98, International Society for Optics and Photonics, 1999, 304.
  4. Y.-L. Lu, Y.-Q. Lu and N.-B. Ming, Fluorescence and attenuation properties of Er3+-doped phosphate-glass fibers and efficient infrared-to-visible up-conversion, Appl. Phys. B. 62 (1996) 287.
  5. W. Koechner, Solid-state laser engineering, Springer (New York), 2013.
  6. T. Tolenis, L. Grineviˇci¯ut˙e, R. Buzelis, L. Smalakys, E. Pupka, S. Melnikas, A. Selskis, R. Drazdys and A. Melninkaitis, Sculptured anti-reflection coatings for high power lasers, Opt. Mater. Express. 7 (2017) 1249.
  7. M. Keshavarz Hedayati and M. Elbahri, Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review, Materials 9 (2016) 497.
  8. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan and E. Van Stryland, Handbook of optics, Volume IV: Optical properties of materials, (New York City), 2009.
  9. J. Dobrowolski, Advances in Optical Thin Films II, International Society for Optics and Photonics, 2005, 596303.
  10. H. K. Raut, V. A. Ganesh, A. S. Nair and S. Ramakrishna, Anti-reflective coatings: A critical, in-depth review, Energy Environ. Sci. 4 (2011) 3779.
  11. A. H. Jareeze, Design and simulation antireflection coating for laser Nd:YAG (1064nm) wavelength and has multifrequency (532,355nm) on glass substrate, ANJS 11 (2008) 104.
  12. https://www.rp-photonics.com/anti reflection coatings.html
  13. https://www.edmundoptics.com/knowledge-center/application-notes/lasers/anti-reflection-coatings/.
  14. Y. Wei, H. Liu, O. Sheng, Z. Liu, S. Chen and L. Yang, Laser damage properties of TiO2/Al2O3 thin films grown by atomic layer deposition, Appl. Opt. 50 (2011) 4720.
  15. Q. Zhang, F. Pan, J. Luo, Q. Wu, Z. Wang and Y. Wei, Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition, J. Alloys Compd. 659 (2016) 288.
  16. N. Uehara, R. Okuda and T. Shidara, Optical Interference Coatings, Optica Publishing Group, 2004, WA5.
  17. H. V. Mai, A. Jaffr´e, K. M. Doan, T. D. Trinh and O. Schneegans, A new simple analytical method for a highly accurate determination of the optical parameters of a slab from transmittance data, Appl. Spectrosc. 76 (2022) 590.
  18. E. Nichelatti, Complex refractive index of a slab from reflectance and transmittance: analytical solution, J. Opt. 4 (2002) 400.
  19. C. Yin, M. Zhu, T. Zeng, J. Sun, R. Zhang, J. Zhao, L. Wang and J. Shao, Al2O3 anti-reflection coatings with graded-refractive index profile for laser applications, Opt. Mater. Express. 11 (2021) 875.
  20. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkm¨uller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores and W. Ted Masselink, Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride, Appl. Opt. 51 (2012) 6789.
  21. R. Boidin, T. Halenkoviˇc, V. Nazabal, L. Beneˇs and P. Nˇemec, Pulsed laser deposited alumina thin films, Ceram. Int. 42 (2016) 1177.
  22. H. V. Mai, D. C. Duong, H. H. Le, B. D. Bui, N. N. Phan, K. K. Doan, H. M. Nguyen, A. Jaffr´e and O. Schneegans, The 10th International Conference on Photonics and Applications, Publishing House for Science and Technology, 2018, 71.