Vol. 32 No. 4 (2022): Coming Issue

Heat Conductance Oscillations in Two Weakly Connected Charge Kondo Circuits

T. K. T. Nguyen
Institute of Physics, Vietnam Academy of Science and Technology
M. N. Kiselev
The Abdus Salam International Centre for Theoretical Physics

Published 22-09-2022


  • thermoelectric transport,
  • thermal conductance,
  • Kondo effect

How to Cite

Nguyen, T. T. K., & Kiselev, M. (2022). Heat Conductance Oscillations in Two Weakly Connected Charge Kondo Circuits. Communications in Physics, 32(4). https://doi.org/10.15625/0868-3166/17169

Funding data


We revisit a model describing Seebeck effect on a weak link between two charge Kondo circuits, which has been proposed in the [Phys. Rev. B 97 (2018) 085403]. We calculate the thermoelectric coefficients in the perturbation theory assuming smallness of the reflection amplitudes of the quantum point contacts. We focus on the linear response equations for the heat conductance in three different scenarios as: Fermi liquid vs Fermi liquid, Fermi liquid vs non-Fermi liquid, non-Fermi liquid vs non-Fermi liquid. The oscillations of the heat conductance as a function of the gate voltage of each quantum dot are analysed in both Fermi liquid and non-Fermi liquid regimes. We discuss possible experimental realizations of the model to observe the signatures of the non-Fermi liquid behaviour in the heat conductance measurements.


Download data is not yet available.


Metrics Loading ...


  1. V. Zlatic and R. Monnier, Modern Theory of Thermoelectricity, Oxford University Press, 2014. DOI: https://doi.org/10.1093/acprof:oso/9780198705413.001.0001
  2. G. Benenti, G. Casati, K. Saito, and R. Whitney, Phys. Rep. 694 (2017) 1.
  3. Y. M. Blanter and Y. V. Nazarov, Quantum Transport: Introduction to Nanoscience, Cambridge University Press, Cambridge, 2009.
  4. J. Kondo, Resistance Minimum in Dilute Magnetic Alloys, Prog. Theor. Phys. 32 (1964) 37. DOI: https://doi.org/10.1143/PTP.32.37
  5. A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism, Cambridge University Press, Cambridge, 1993. DOI: https://doi.org/10.1017/CBO9780511470752
  6. P. Nozieres and A. Blandin, Kondo effect in real metals, J. Phys. France 41 (1980) 193. DOI: https://doi.org/10.1051/jphys:01980004103019300
  7. K. Flensberg, Capacitance and conductance of mesoscopic systems connected by quantum point contacts, Phys. Rev. B 48 (1993) 11156. DOI: https://doi.org/10.1103/PhysRevB.48.11156
  8. K. A. Matveev, Coulomb blockade at almost perfect transmission, Phys. Rev. B 51 (1995) 1743. DOI: https://doi.org/10.1103/PhysRevB.51.1743
  9. A. Furusaki and K. A. Matveev, Theory of strong inelastic cotunneling, Phys. Rev. B 52 (1995) 16676. DOI: https://doi.org/10.1103/PhysRevB.52.16676
  10. A. V. Andreev and K. A. Matveev, Coulomb blockade oscillations in the thermopower of open quantum dots, Phys. Rev. Lett. 86 (2001) 280; DOI: https://doi.org/10.1103/PhysRevLett.86.280
  11. A. V. Andreev and K. A. Matveev, Thermopower of a single-electron transistor in the regime of strong inelastic cotunneling, Phys. Rev. B 66 (2002) 045301. DOI: https://doi.org/10.1103/PhysRevB.66.045301
  12. K. Le Hur and G. Seelig, Capacitance of a quantum dot from the channel-anisotropic two-channel Kondo model, Phys. Rev. B 65 (2002) 165338. DOI: https://doi.org/10.1103/PhysRevB.65.165338
  13. T. K. T. Nguyen, M. N. Kiselev and V. E. Kravtsov, Thermoelectric transport through a quantum dot: Effects of asymmetry in Kondo channels, Phys. Rev. B 82 (2010) 113306. DOI: https://doi.org/10.1103/PhysRevB.82.113306
  14. T. K. T. Nguyen and M. N. Kiselev, Thermoelectric transport through a quantum dot: Effects of asymmetry in Kondo channels, Phys. Rev. B 92 (2015) 045125.
  15. T. K. T. Nguyen and M. N. Kiselev, Seebeck effect on a weak link between Fermi and non-Fermi liquids, Phys. Rev. B 97 (2018) 085403. DOI: https://doi.org/10.1103/PhysRevB.97.085403
  16. T. K. T. Nguyen, M. N. Kiselev, Thermoelectric transport in a three-channel charge Kondo circuit, Phys. Rev. Lett. 125 (2020) 026801. DOI: https://doi.org/10.1103/PhysRevLett.125.026801
  17. Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. D. Parmentier, A. Cavanna and F. Pierre, Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states, Nature 526 (2015) 233. DOI: https://doi.org/10.1038/nature15384
  18. Z. Iftikhar, A. Anthore, A. K. Mitchell, F. D. Parmentier, U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Simon and F. Pierre, Tunable quantum criticality and super-ballistic transport in a “charge” Kondo circuit, Science 360 (2018) 1315. DOI: https://doi.org/10.1126/science.aan5592
  19. W. Pouse, L. Peeters, C. L. Hsueh, U. Gennser, A. Cavanna, M. A. Kastner, A. K. Mitchell and D. Goldhaber-Gordon, Quantum simulation of an exotic quantum critical point in a two-site charge Kondo circuit, arXiv:2108.12691 [cond-mat.mes-hall].
  20. C. W. J. Beenakker and A. A. M. Staring, Theory of the thermopower of a quantum dot, Phys. Rev. B 46 (1992) 9667. DOI: https://doi.org/10.1103/PhysRevB.46.9667
  21. M. Turek and K. A. Matveev, Cotunneling thermopower of single electron transistors, Phys. Rev. B 65 (2002) 115332. DOI: https://doi.org/10.1103/PhysRevB.65.115332
  22. A. A. M. Staring, L.W. Molenkamp, B.W. Alphenaar, H. van Houten, O. J. A. Buyk, M. A. A. Mabesoone, C.W. J. Beenakker and C. T. Foxon, Coulomb-blockade oscillations in the thermopower of a quantum dot, Europhys. Lett. 22 (1993) 57. DOI: https://doi.org/10.1209/0295-5075/22/1/011
  23. A. S. Dzurak, C. G. Smith, C. H.W. Barnes, M. Pepper, L. Martin-Moreno, C. T. Liang, D. A. Ritchie and G. A. C. Jones, Thermoelectric signature of the excitation spectrum of a quantum dot, Phys. Rev. B 55 (1997) R10197(R). DOI: https://doi.org/10.1103/PhysRevB.55.R10197
  24. R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev and L. W. Molenkamp, Thermopower of a Kondo spincorrelated quantum dot, Phys. Rev. Lett. 95 (2005) 176602. DOI: https://doi.org/10.1103/PhysRevLett.95.176602
  25. R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg and D. Goldhaber-Gordon, Observation of the two-channel Kondo effect, Nature (London) 446 (2007) 167. DOI: https://doi.org/10.1038/nature05556
  26. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin and T. Koga, Low-dimensional thermoelectric materials, Phys. Solid State 41 (1999) 679. DOI: https://doi.org/10.1134/1.1130849
  27. G. Benenti, G. Casati, K. Saito and R. S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale, Phys. Rep. 694 (2017) 1. DOI: https://doi.org/10.1016/j.physrep.2017.05.008
  28. V. Zlatic, T. A. Costi, A. C. Hewson, and B. R. Coles, Thermoelectric power of concentrated Kondo systems, Phys. Rev. B 48 (1993) 16152(R). DOI: https://doi.org/10.1103/PhysRevB.48.16152
  29. T.-S. Kim and S. Hershfield, Thermoelectric effects of an Aharonov-Bohm interferometer with an embedded quantum dot in the Kondo regime, Phys. Rev. B 67 (2003) 165313. DOI: https://doi.org/10.1103/PhysRevB.67.165313
  30. M. G. Vavilov and A. D. Stone, Failure of the Wiedemann-Franz law in mesoscopic conductors, Phys. Rev. B 72 (2005) 205107. DOI: https://doi.org/10.1103/PhysRevB.72.205107
  31. D. B. Karki and M. N. Kiselev, Nonlinear Seebeck effect of SU(N) Kondo impurity, Phys. Rev. B 100 (2019) 125426. DOI: https://doi.org/10.1103/PhysRevB.100.125426
  32. D. B. Karki, Coulomb blockade oscillations of heat conductance in the charge Kondo regime, Phys. Rev. B 102 (2020) 245430. DOI: https://doi.org/10.1103/PhysRevB.102.245430
  33. D. B. Karki, Wiedemann-Franz law in scattering theory revisited, Phys. Rev. B 102 (2020) 115423. DOI: https://doi.org/10.1103/PhysRevB.102.115423
  34. A. I. Pavlov and M. N. Kiselev, Quantum thermal transport in the charged Sachdev-Ye-Kitaev model: Thermoelectric Coulomb blockade, Phys. Rev. B 103 (2021) L201107. DOI: https://doi.org/10.1103/PhysRevB.103.L201107
  35. K. Yang and B. I. Halperin, Thermopower as a possible probe of non-Abelian quasiparticle statistics in fractional quantum Hall liquids, Phys. Rev. B 79 (2009) 115317. DOI: https://doi.org/10.1103/PhysRevB.79.115317
  36. W. E. Chickering, J. P. Eisenstein, L. N. Pfeiffer and K. W. West, Thermoelectric response of fractional quantized Hall and reentrant insulating states in the N = 1 Landau level, Phys. Rev. B 87 (2013) 075302. DOI: https://doi.org/10.1103/PhysRevB.87.075302
  37. C.-Y. Hou, K. Shtengel, G. Refael, and P. M. Goldbart, Ettingshausen effect due to Majorana modes, New J. Phys. 14 (2012) 105005. DOI: https://doi.org/10.1088/1367-2630/14/10/105005
  38. Y. Kleeorin, H. Thierschmann, H. Buhmann, A. Georges, L. W. Molenkamp and Y. Meir, How to measure the entropy of a mesoscopic system via thermoelectric transport, Nat. Commun. 10 (2019) 5801. DOI: https://doi.org/10.1038/s41467-019-13630-3
  39. I. L. Aleiner and L. I. Glazman, Mesoscopic charge quantization, Phys. Rev. B 57 (1998) 9608. DOI: https://doi.org/10.1103/PhysRevB.57.9608
  40. L. Onsager, Reciprocal Relations in Irreversible Processes. I., Phys. Rev. 37 (1931) 405 DOI: https://doi.org/10.1103/PhysRev.37.405
  41. L. Onsager, Reciprocal Relations in Irreversible Processes. II., Phys. Rev. 38 (1931) 2265. DOI: https://doi.org/10.1103/PhysRev.38.2265
  42. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, In: M. Abramowitz and I. A. Stegun, Eds., Dover Books on Advanced Mathematics, Dover Publications, New York, 1965. DOI: https://doi.org/10.1115/1.3625776
  43. D. W. Hahn and M. N. Ozisik, Heat Conduction, 3rd Edition , Wiley Publisher, Hoboken, New Jersey, 2012. DOI: https://doi.org/10.1002/9781118411285
  44. D. B. Karki and M. N. Kiselev, Thermoelectric transport through a SU(N) Kondo impurity, Phys. Rev. B 96 (2017) 121403(R). DOI: https://doi.org/10.1103/PhysRevB.96.121403
  45. D. B. Karki, E. Boulat, and C. Mora, Two-sites quantum island in the quasi-ballistic regime, arXiv:2204.08549 [cond-mat.mes-hall].