Vol. 32 No. 4 (2022): Coming Issue
Papers

Development of Multi-axis Differential Optical Absorption Spectroscopy System and its Application in Measuring Atmospheric NO\(_2\) Volume Mixing Ratio in Hanoi

Dinh-V-Trung
Institute of Physics, VAST, Hanoi
Bui Van Hai
Le Quy Don Technical University
Nguyen Thi Thanh Bao
(1)Institute of Physics, Vietnam Academy of Science and Technology; (2) Graduate University of Science and Technology GUST
Pham Dong Bang
\(^1\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology; </BR> \(^2\)Department of Physics, Faculty of Basic-Fundamental Sciences, Vietnam Maritime University, 484 Lach Tray Road, Le Chan, Hai Phong, Vietnam
Vu Thi Kim Oanh
Institute of Physics, Vietnam Academy of Science and Technology
Nguyen Xuan Tu
(1) Institute of Physics, Vietnam Academy of Science and Technology; (2) Graduate University of Science and Technology GUST
Phung Viet Tiep
Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Pham Hong Minh
Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Nguyen Gia Cuong
Center for Environmental Monitoring, 556 Nguyen Van Cu, Hanoi

Published 09-08-2022

Keywords

  • volume mixing ratio

How to Cite

Trung, D. V., Bui Van, H., Nguyen, T. T. B., Pham, D. B., Vu, T. K. O., Nguyen, X. T., Phung, V. T., Pham, H. M., & Nguyen, G. C. (2022). Development of Multi-axis Differential Optical Absorption Spectroscopy System and its Application in Measuring Atmospheric NO\(_2\) Volume Mixing Ratio in Hanoi. Communications in Physics, 32(4). https://doi.org/10.15625/0868-3166/17173

Abstract

Monitoring the concentration and distribution of nitrogen dioxide NO2 in urban environment is of great interest because of the importance of this gaseous pollutant in affecting air quality. In this paper we present the development of a multi-axis differential optical absorption spectroscopy instrument capable of sensitively detecting NO2. The passive instrument collects the sun light scattered by the air molecules and aerosols in the atmosphere and measures the spectrum using a highly sensitive portable spectrometer. The viewing direction of the instrument is controlled through a motor and can be changed continuously. Data analysis of the measured spectra allows us to simultaneously determine the differential scant column density of NO2 and oxygen dimer O4. From the accurately known concentration of O4, the effective optical path length of scattered sun light near the horizontal direction could be derived, which in turn provides an estimate the concentration of NO2. The measured data show that the concentration of NO2 in Hanoi is in the range ~1.5 ppb. We also present the detection of formaldehyde HCHO and possible detection of glyoxal CHOCHO. Our sensitive instrument opens up the possibility to monitor the concentration of other molecular species of interest in urban environment of Hanoi.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. U. Platt, J. Stutz, 2008, Differential Optical Absorption Spectroscopy: Principles and Applications, Springer Verlag Heidelberg
  2. S.F. Schreier, A. Richter, E. Peters, M. Ostendorf, A. W. Schmalwieser, P. Weihs, and J. P. Burrows, Dual ground-based MAX-DOAS observations in Vienna, Austria: Evaluation of horizontal and temporal NO2, HCHO, and CHOCHO distributions and comparison with independent data sets, Atmos. Environ. X 5 (2020) 100059. DOI. https://doi.org/10.1016/j.aeaoa.2019.100059
  3. E. Dimitropoulou, F. Hendrik, G. Pinardi, M. M. Friedrich, A. Merlaud, F. Tack, H. D. Longueville, C. Fayt, C. Hermans, Q. Laffineur, F. Fierens and M. V. Roozendael, Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels, Atmos. Meas. Tech. 13 (2020) 5165. DOI: https://doi.org/10.5194/amt-13-5165-2020, 2020
  4. A. Rosu, D.E. Constantin, M. Voiculescu, M. Arseni, A. Merlaud, M. V. Roozendael and P. L. Georgescu, Observations of atmospheric NO2 using a new low-cost MAX-DOAS system, Atmosphere 11 (2020) 129. DOI: https://doi.org/10.3390/atmos11020129
  5. QDOAS data analysis software https://uv-vis.aeronomie.be/software/QDOAS/LastChanges.php
  6. R. Sinreich, A. Merten, L. Molina, and R. Volkamer, Parameterizing radiative transfer to convert MAX-DOAS dSCDs into near-surface box-averaged mixing ratios, Atmos. Meas. Tech. 6 (2013) 1521. DOI: https://doi.org/10.5194/amt-6-1521-2013
  7. Y. Wang, A. Li, P.H. Xie, T. Wagner, H. Chen, W. Q. Liu and J. G. Liu, A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy, Atmos. Meas. Tech. 7 (2014) 1663. DOI: https://doi.org/10.5194/amt-7-1663-2014
  8. J.F. Grainger and J. Ring, 1962, Anomalous Fraunhofer line profiles, Nature 193 (1962) 762. DOI: https://doi.org/10.1038/193762a0
  9. A. Merlaud, M. Van Roozendael, J. van Gent, C. Fayt, J. Maes, X. Toledo-Fuentes, O. Ronveaux, and M. De Mazière, DOAS measurements of NO2 from an ultralight aircraft during the earth challenge expedition, Atmos. Meas. Tech. 5 (2012) 2057.DOI: https://doi.org/10.5194/amt-5-2057-2012
  10. A. C. Vandaele, C. Hermans, P. C. Simon, M. van Roozendael, J. M. Guilmot, M. Carleer and R. Colin, Fourier transform measurement of NO2 absorption cross-section in the visible range at room temperature, J. Atmos. Chem. 25 (1996) 289. DOI: https://doi.org/10.1007/BF00053797
  11. K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick and J. P. Burrows, Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region, J. Photochem. Photobiol. A 157 (2003) 167. DOI: https://doi.org/10.1016/S1010-6030(03)00062-5
  12. C. Hermans et al. at http://spectrolab.aeronomie.be/o2.htm
  13. L.S. Rothman, A. Barbe, D. Chris Benner, L.R.Brown, C.Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D.Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K.Tang, R. A.Toth, J.Vander Auwera, P.Varanasi and K. Yoshinoa, The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, J. Quant. Spec. Rad. Trans. 82 (2003) 5. DOI: https://doi.org/10.1016/S0022-4073(03)00146-8
  14. H. K. Roscoe, Van Roozendael, M. Fayt, et al., Intercomparison of slant column measurements of NO2 and O4 by MAX-DOAS and zenith-sky UV and visible spectrometers, Atmos. Meas. Tech. Discuss. 3 (2010) 3383. DOI. https://doi.org/10.5194/amt-3-1629-2010
  15. R. Volkamer, P. Spietz, J. Burrows and U. Platt, High-resolution absorption cross-section of glyoxal in the UV–vis and IR spectral ranges, J. Photochem. Photobiol. 172 (2005) 35. DOI. https://doi.org/10.1016/j.jphotochem.2004.11.011