Ionospheric quasi-biennial oscillation of the TEC amplitude of the equatorial ionization anomaly crests from continuous GPS data in the Southeast Asian region


  • Dung Nguyen Thanh 1-Institute of Geophysics, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Minh Le Huy 1-Institute of Geophysics, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Christine Amory-Mazaudier Sorbonne Université, UPMC Univ. Paris 06, Paris, France
  • Rolland Fleury LAB-STICC, UMR 6285, Institut Mines-Telecom Atlantique, France
  • Susumu Saito Electronic Navigation Research Institute, MPAT, Japan
  • Thang Nguyen Chien Institute of Geophysics, VAST, Hanoi, Vietnam
  • Thanh Le Truong Institute of Geophysics, VAST, Hanoi, Vietnam
  • Hong Pham Thi Thu 1-Institute of Geophysics, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Thanh Nguyen Ha Institute of Geophysics, VAST, Hanoi, Vietnam
  • Mai Nguyen Thi Institute of Geophysics, VAST, Hanoi, Vietnam
  • Que Le International University, Vietnam National University, Ho Chi Minh City, Vietnam



The quasi-biennial oscillation (QBO) signals at two Equatorial ionization anomaly (EIA) crests of the ionosphere have been studied using the continuous GNSS network data in Vietnam and adjacent regions during the 2008- 2021 period. The monthly mean EIA crests amplitudes are calculated. The Lomb-Scargle periodogram method was applied to the residuals of the EIA crests magnitudes, ΔTEC, which are obtained from subtracting the fittings with solar index, F10.7. The Lomb-Scargle spectrum shows the quasi-biennial component in the residuals ΔTEC with the picks at 18, 25, and 29-30 months. The ionosphere QBO at two EIA crests was found out by the band-pass filter centered at 25 months with haft-power points at 17 and 33 months. The zonal wind data at 50 hPa (~ 20 km) of the tropical equatorial stratosphere is used as the stratosphere QBO (SQBO) to consider the relationship between the SQBO and the obtained ionosphere QBO. The direct comparison and the cross wavelet transform of the SQBO and ionosphere QBO data series show that during 2008-2009, the ionosphere QBO signal is low, the SQBO and ionosphere QBO are in phase during the 2010-2013 and 2018-2021 periods, but anti-phase during the 2014-2017 period. For the 2010-2013, 2014-2017 and 2018-2021 periods, the correlation coefficients are 0.623, 0.637, -0.646 in the northern crest, and 0.571, 0.53, -0.530 in the southern crest, respectively. Furthermore, we also observed that the SQBO and the ionosphere QBO signals were shortened during the 2015-2016 period, approximately 1.5 years. Previous studies showed that the ENSO (El Niño - Southern Oscillation) warm phase, also known as El-Niño existed during 2015-2016. The results of this study allow us to assume that the SQBO influences the ionosphere QBO. Our results show that the SQBO is the main factor affecting the ionospheric QBO at two EIA crests. However, the physical theoretical interpretation of the mechanisms of action is a challenge for scientists and requires further research.


Download data is not yet available.


Apostolov E.M., 1985. Quasi-biennial oscillation in sunspot activity. Bull. Astron., 36, 97-102.

Baldwin M.P., L.J. Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randel, J.R. Holton, M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A. Jones, J.S. Kinnersley, C. Marquardt, K. Sato, M. Takahashi, 2001. The quasi-biennial oscillation. Rev. Geophys., 39, 179-229.

Burrage M.D., R.A. Vincent, H.G. Mayr, W.R. Skinner, N.F. Arnold, P.B. Hays, 1996. Long-term variability in the equatorial middle atmosphere zonal wind. J. Geophys. Res., 101, 12847-12854. Doi: 10.1029/96jD00575.

Chanin M. L., P. Keckhut, A. Hauchecorne, K. Labitzke, 1989. The solar activity-QBO, effect in the lower thermosphere. Ann. Geophys., 32, 225-230.

Chen P., 1992. Evidence of the ionospheric response to the QBO. Geophys. Res. Lett., 19, 1089-1092.

Dashora N., S. Suresh, 2015.Characteristics of low-latitude TEC during solar cycles 23 and 24 using global ionospheric maps (GIMs) over Indian sector. J. Geophys. Res. Space Phys., 120(6), 5176-5193. Doi: 10.1002/2014ja020559.

Diallo M., C. Schwartz, A. Kebede, 2017. Response of stratosphere tracers to the 2015/2016 QBO disruption, Conference: Training school on stratosphere-troposphere interactions, 2-5 September 2017 at University of Cape Town, South Africa.

Dunkerton T., 1997. The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, No D22, 26053-26076.

Ebdon R.A., R.G. Veryard, 1961. Fluctuations in equatorial stratospheric winds. Nature, 189, 791-793.

Echer E., 2007. On the quasi- biennial oscillation (QBO) signal in the foF2 ionospheric parameter. J. Atmos. Sol. Terr. Phys., 69, 621-627.

Espy P.J., S. O. Fernández, P. Forkman, D. Murtagh, J. Stegman, 2011. The role of the QBO in the inter-hemispheric coupling of summer mesospheric temperatures. Atmos. Chem. Phys., 11, 495-502. Doi: 10.5194/acp-11-495-2011.

Fernández L.I., A.M. Meza, A.G. Elías, 2014. Quasi-biennial oscillation in GPS VTEC measurements, Adv. Space Res., 54(2), 161-167. Doi: 10.1016/j.asr.2014.03.027.

Ford E.A.K., R.E. Hibbins, M.J. Jarvis, 2009. QBO effects on Antarctic mesospheric winds and polar vortex dynamics. Geophys. Res. Lett., 36, L20801. Doi: 10.1029/2009GL039848.

Grinsted A., J.C. Moore, S. Jevrejeva, 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys., 11, 561-566. SRef-ID: 1607-7946/npg/2004-11-561.

Hibbins R.E., M.J. Jarvis, E.A.K. Ford, 2009. Quasi-biennial oscillation influence on long-period planetary waves in the Antarctic upper mesosphere. J. Geophys. Res., 114, D09109. Doi: 10.1029/2008JD011174.

Holton J.R., R.S. Lindzen, 1972. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 1076-1080.

Holton J.R., H.C. Tan, 1980. The influence of the equatorial quasi- biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200-2208.

Huang Y.N., K. Cheng, S.W. Chen, 1989. On the equatorial anomaly of the ionosphere total electron content near the northern anomaly crest region. J. Geophys. Res., 94(A10), 13515-13525.

Kane R.P., 1995. Quasi-biennial oscillation in ionospheric parameters measured at Juliusruh (55°N, 13°E). J. Atmos. Terr. Phys., 57, 415-419.

Kane R.P., 2005. Differences in the quasi-biennial oscillation and quasi-triennial oscillation characteristics of the solar, interplanetary and terrestrial parameters. J. Geophys. Res.: Space Phys., 110, A01108.

Labitzke K., 1987. Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophys. Res. Lett., 14(5), 535-537. Doi: 10.1029/gl014i005p00535.

Labitzke K., 1982. On the Interannual Variability of the Middle Stratosphere during the Northern Winters. J. Meteorol. Soc. Japan, 60(1), 124-139.

Labitzke K., 2005. On the solar cycle-QBO relationship: a summary. J. Atmos. Sol.Terr. Phys., 67 (Special Issue), 45-54.

Labitzke K., H. van Loon, 1988. Association between the l1- year solar cycle, the QBO and the atmosphere, part I, The troposphere and stratosphere in the Northern Hemisphere in winter. J. Atmos. Terr. Phys., 50, 197-206.

Le Huy Minh, A. Bourdillon, P. Lasudrie Duchesne, R. Fleury, Nguyen Chien Thang, Tran Thi Lan, Ngo Van Quan, Le Truong Thanh, Hoang Thai Lan, Tran Ngoc Nam, 2006. Determination of the ionospheric total electron content in Vietnam using the data from three GPS receivers at Hanoi, Hue and Hoc Mon. J. Geology, A296, 53-62 (in Vietnamese).

Le Huy M., C. Amory-Mazaudier,R. Fleury, A. Bourdillon, P. Lassudrie-Duchesne, L. Tran Thi, T. Nguyen Chien, T. Nguyen Ha, P. Vila, 2014. Time variations of the total electron content in the Southeast Asian equatorial ionization anomaly for the period 2006-2011. Adv. Space Res., 54, 355-368. Doi: 10.1016/ j.asr.2013.08.03.

Le Huy Minh, Tran Thi Lan, C. Amory-Mazaudier, R. Fleury, A. Bourdillon, J. Hu, Vu Tuan Hung, Nguyen Chien Thang, Le Truong Thanh, Nguyen Ha Thanh, 2016a. Continuous GPS network in Vietnam and results of study on the total electron content in the South East Asian region. Vietnam Journal of Earth Sciences, 38(2) 153-165.

Le Huy Minh, Tran Thi Lan, R. Fleury, C. Amory Mazaudier, Le Truong Thanh, Nguyen Chien Thang, Nguyen Ha Thanh, 2016b. TEC variations and ionospheric disturbances during the magnetic storm in March 2015 observed from continuous GPS data in the Southeast Asia region. Vietnam Journal of Earth Sciences, 38(3), 267-285.

Liu J.Y., H.F. Tsai, T.K. Jung, 1996. Total electon content obtained using the global positioning system. TAO, 7(1), 07-17.

Lomb N.R., 1976. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39, 447-462.

Lu H., D. Pancheva, P. Mukhtarov, I. Cnossen, 2012. QBO modulation of traveling planetary waves during northern winter. J. Geophys. Res., 117, D09104. Doi: 10.1029/2011JD016901.

Lu H., Gray L.J., Baldwin M.P., Jarvis M.J., 2009. Life cycle of the QBO-modulated 11-year solar cycle signals in the Northern Hemispheric winter. Quaterly J. Royal Meteorol. Soc., 135, 1030-1043.

Mansilla G.A., P. Fernandez de Campra, M. Zossi de Artigas, 2009. Quasi-biennial oscillation in foF2 at the south crest of the equatorial anomaly. J. Atmos. Sol. Terr. Phys., 71(14), 1610-1612.

McPhaden M.J., 2008. Evolution of the 2006-2007 El Niño: the role of intraseasonal to interannual time scale dynamic. Adv. Geosci., 14, 219-230.

Mohamakumar K., 2008. Stratosphere Troposphere Interaction. An introduction, Springer, 416p.

Murphy D.J., S.P. Alexander, R.A. Vincent, 2012. Interhemispheric dynamical coupling to the southern mesosphere and lower thermosphere. J. Geophys. Res., 117, D08114. Doi: 10.1029/2011JD016865.

Naujokat B., 1986. An Update of the Observed Quasi-Biennial Oscillation of the Stratospheric Winds over the Tropics, J. Atmos. Sci., 43(17), 1873-1877.

Neumann A., 1990. QBO and solar activity effects on temperatures in the mesopause region. J. Atmos. Terr. Phys., 52, 165-173.

Olsen N., M. Kiefer, 1995. Geomagnetic daily variations produced by a QBO in thermospheric prevailing winds. J. Atmos. Sol. Terr. Phys., 57(13), 1583-1589.

Osprey S.M., N. Butchart, J.R. Knight, A.A. Scaife, K. Hamilton, J.A. Anstey, V. Schenzinger, C. Zhang, 2016. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 353(6306), 1424-1427.

Physical Sciences Laboratory,

Reed R.J., W. J. Campbell, L. A. Rasmussen, D.G. Rogers, 1961. Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res., 66(3), 813-818. Doi: 10.1029/jz066i003p00813.

Salby M., P. Callaghan, 2000. Connection between the Solar Cycle and the QBO. J. Climate, 13(14), 2652- 2662. Doi: 10.1175/1520-0442(1999).

Scargle J.D., 1982. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263, 835-853.

Sugiura M., D.J. Poros, 1977. Solar-generated quasi-biennial geomagnetic variation. J. Geophys. Res., 82, 5621-5628. Doi: 10.1029/JA082i035p05621.

Sun Y.Y., H. Liu, Y. Miyoshi, L. Liu, L.C. Chang, 2018. El Niño-Southern Oscillation effect on quasi-biennial oscillations of temperature diurnal tides in the mesosphere and lower thermosphere. Earth, Planets Space, 70-85. Doi: 10.1186/s40623-018-0832-6.

Sun R., S.-Y.Gu, X. Dou, R. Zhang, J. Kuai, T. Tsuda, 2022. The impact of the quasi-biennial oscillation on the mesosphere and ionosphere. J. Geophys. Res. Space Phys., 127, e2021JA029920. https:/

Tang W., X.H. Xue, J. Lei, X.K. Dou, 2014. Ionospheric quasi-biennial oscillation in global TEC observations. J. Atmos. Solar-Terr. Phys., 107, 36-41.

Torrence C., G.P. Compo, 1998. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc., 79, 61-78.

Tsai H.F., J.Y. Liu, W.H. Tsai, C.H. Liu, 2001. Seasonal variations of the ionpsheric total electron content in Asian equatorial anomaly regions. J. Geophys. Res., 106(A12), 30363-30369.

Venkat Ratnam M., G.K. Kumar, B.V.K. Murthy, A.K. Patra, V.V.M.J. Rao, S.V.B. Rao, K.K. Kumar, G. Ramkumar, 2008. Long-term variability of the low latitude mesospheric SAO and QBO and their relation with stratospheric QBO. Geophys. Res. Lett., 35, L21809. Doi: 10.1029/2008GL035390.

Vineeth C., T.K. Pant, K.K. Kumar, S.G. Sumod, S. Gurubaran, R. Sridharan, 2011. Planetary wave tidal interactions over the equatorial mesosphere-lower thermosphere region and their possible implications for the equatorial electrojet. J. Geophys. Res., 116, A01314. Doi: 10.1029/2010JA015895.

Wallace J.M., V.E. Kousky, 1968. Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900-907.

Wallace J.M., 1973. General circulation of the tropical lower stratosphere. Rev. Geophys. Space Phys., 11(2), 191-222. Doi: 10.1029/rg011i002p00191.

Wang J.C., R. Tsai-Lin, L.C. Chang, Q. Wu, C.C.H. Lin, J. Yue, 2017. Modeling study of the ionosphere responses to the quasi-biennial oscillations of the sun and stratosphere. J. Atmos. Sol.-Terr. Phys., 171, 119-130. Doi: 10.1016/j.jastp.2017.07.024.

Xu J., A.K. Smith, H.L. Liu, W. Yuan, Q. Wu, G. Jiang, M.G. Mlynczak, J.M. Russell III, S.J. Franke, 2009. Seasonal and quasi-biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). J. Geophys. Res., 114, D13107. Doi: 10.1029/2008JD011298.

Yacob A., B.N. Bhargava, 1968. On 26-month periodicity in quiet-day range of geomagnetic horizontal force and in sunspot number. J. Atmos. Terr. Phys., 30(11), 1907-1911.

Yadav S., C. Vineeth, K. K. Kumar, R. K. Choudhary, T.K. Pant, S. Sunda, 2019. The role of the phase of QBO in modulating the influence of the SSW effect on the Equatorial Ionosphere. J. Geophys. Res: Space Physics, 124. Doi: 10.1029/2019JA026518.




How to Cite

Nguyen Thanh, D. ., Le Huy, M., Amory-Mazaudier, C., Fleury, R., Saito, S., Nguyen Chien, T., Le Truong, T., Pham Thi Thu, H. ., Nguyen Ha, T., Nguyen Thi, M., & Le, Q. (2022). Ionospheric quasi-biennial oscillation of the TEC amplitude of the equatorial ionization anomaly crests from continuous GPS data in the Southeast Asian region. Vietnam Journal of Earth Sciences.




Most read articles by the same author(s)