Effects of temperature and relative humidity on resonant frequency of mems cantilever resonators under atmospheric pressure

Authors

  • Nguyen Chi Cuong Research Laboratories of Saigon High-Tech-Park
  • Minh Truong Phan Institute for Computational Science and Technology, Room 311(A&B), SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam
  • Xuan Thang Trinh Institute for Computational Science and Technology, Room 311(A&B), SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam
  • Quoc Cuong Le Department of Information and Communications of Ho Chi Minh City, 59 Ly Tu Trong Street, Ben Nghe Ward, District 1, Ho Chi Minh City, Viet Nam
  • Vo Ke Thanh Ngo The Research Laboratories of Saigon High-Tech Park, Lot I3, N2 Street, Saigon Hi-Tech Park, District 9, Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16347

Keywords:

squeeze film damping (SFD), resonant frequency, MEMS cantilever resonator, relative humidity, luminescence temperature anti-quenching, atmospheric pressure

Abstract

In this study, the effects of temperature and relative humidity on the resonant frequency of a micro-electro-mechanical system (MEMS) cantilever resonator under atmospheric pressure (p=101325 Pa) are discussed. The squeeze film damping (SFD) problem of MEMS cantilever resonators is modeled by solving the modified molecular gas lubrication (MMGL) equation, the equation of motion of micro-cantilever, and their appropriate boundary conditions, simultaneously in the eigen-value problem. The effective viscosity (µeff(RH, T)) of moist air is utilized to modify the MMGL equation to consider the effects of temperature and relative humidity under atmospheric pressure. Thus, the effects of temperature (T) and relative humidity (RH) on the resonant frequency of MEMS cantilever resonators over a wide range of gap thicknesses and under atmospheric pressure are discussed. The results showed that the frequency shift increases as the relative humidity and temperature increase. The influence of relative humidity on the resonant frequency becomes more significant under conditions of higher temperature and smaller gap thickness.

Downloads

Download data is not yet available.

References

Takahashi H., Dung, N. M., Matsumoto K. and Shimoyama I. - Differential pressure sensor using a piezoresistive MEMS cantilever, J. Micromech. Microeng 22 (2012) 055015-055021. https://doi.org/10.1088/0960-1317/22/5/055015.

Baller M. K., Lang H. P., Fritz J., Gerber C., Gimzewski J. K., Drechsler U., Rothuizen H., Despont M., Vettiger P., Battiston F. M., Ramseyer J. P., Fornaro P., Meyer E. and Gu¨ntherodt H. J. - A MEMS cantilever array-based artificial nose, Ultramicroscopy 82 (2000) 1-9. https://doi.org/ 10.1016/s0304-3991(99)00123-0.

Lang H. P., Hegner M. and Gerber C. - MEMS cantilever array sensors, materialstoday 8 (4) (2005) 30-36. https://doi.org/10.1016/S1369-7021(05)00792-3.

Gupta A., Akin D. and Bashir R. - Single virus particle mass detection using microresonators with nanoscale thickness, Appl. Phys. Lett. 84 (11) (2004) 1976-1978. https://doi.org/10.1063/1.1667011.

Arjunan N. and Shanmuganantham T. - Stress and Sensitivity Analysis of MEMS cantilever Based MEMS Sensor for Environmental Applications, Journal of Research in Engineering and Applied Sciences. 01 (01) (2016) 20-24. https://doi.org/ 10.46565/jreas.2016.v01i01.003.

Chen Q., Fang J., Ji H. F. and Varahramyan K. - Micromachined SiO2 micro MEMS cantilever for high sensitive moisture sensor, Microsyst. Technol. 14 (2008) 739-746. https://doi.org/ 10.1007/s00542-007-0489-8.

Hosaka H., Itao K. and Kuroda S. - Damping characteristics of beam-shaped micro-oscillators, Sens. Actuators. A. Phys. 49 (1-2) (1995) 87-95. https://doi.org/ 10.1016/0924-4247(95)01003-J.

Bao M. and Yang H. Squeeze film air damping in MEMS, Sens. Actuators. A. Phys. 136 (1) (2007) 3-27. https://doi.org/10.1016/j.sna.2007.01.008.

Lee J. W. - Analysis of fuid-structure interaction for predicting resonant frequencies and quality factors of a micro MEMS cantilever on a squeeze-film, J. Mech. Sci. Technol. 25 (2011) 3005-3013.

Pandey A. K. and Pratap R. - Effect of flexural modes on squeeze film damping in MEMS cantilever resonators, J. Micromech. Microeng. 17 (12) (2007) 2475-2484. https://doi.org/10.1088/0960-1317/17/12/013.

Burg T. P. and Manalis S. R. - Suspended microchannel resonators for biomolecular detection, Appl. Phys. Lett. 83 (2) (2003) 2698-2700. https://doi.org/ 10.1063/1.1611625.

Hwang C. C., Fung R. F., Yang R. F., Weng C. I. and Li W. L. - A new modified Reynolds equation for ultrathin film gas lubrication, IEEE Trans. Magn. 32 (2) (1996) 344-347. https://doi.org/10.1109/20.486518.

Li W. L. - A database for couette flow rate considering the effects of non-symmetric molecular interactions, J. Tribol. Trans. ASME 124 (4) (2002) 869-873. https://doi.org/10.1115/1.1479700.

Li W. L. - A database for interpolation of Poiseuille flow rate for arbitrary Knudsen number lubrication problems, J. Chin. Inst. Eng. 26 (4) (2003) 455-466. https://doi.org/ 10.1080/02533839.2003.9670799.

Nguyen C. C. and Li W. L. - Effect of gas rarefaction on the quality factors of MEMS cantilever resonators, Microsyst. Technol. 23 (2016) 3185-3199. https://doi.org/ 10.1007/s00542-016-3068-z.

Nguyen C. C. and Li W. L. - Effects of surface roughness and gas rarefaction on the quality factor of MEMS cantilever resonators, Microsyst. Technol. 23 (8) (2016) 3489-3504. https://doi.org/10.1007/s00542-016-3140-8.

Nguyen C. C. and Li W. L. - Influences of temperature on the quality factors of MEMS cantilever resonators in gas rarefaction, Sens. Actuators. A. Phys. 261 (2017) 151-165. https://doi.org/10.1007/s00542-018-4239-x.

Nguyen C.C., Ngo V. K. T., Le H. Q. and Li W. L. - Influences of relative humidity on the quality factors of MEMS cantilever resonators in gas rarefaction, Microsyst. Technol. 25 (2018) 2767-2782. https://doi.org/10.1007/s00542-018-4239-x.

Phan M. T., Trinh X. T., Le Q. C., Ngo V. K. T. and Nguyen C. C. - Effect of Environmental Conditions on Quality Factors of MEMS cantilever Beam Resonator in Gas Rarefaction, Sens. Imaging. 22 (6) (2020) 2767-2782. https://doi.org/10.1007/s11220-020-00329-9.

Nieva P. M., McGruer N. E. and Adams G. G. - Design and characterization of a micromachined Fabry–Perot vibration sensor for high-temperature applications, J. Micromech. Microeng. 16 (12) (2006) 2618-2631. https://doi.org/10.1088/0960-1317/16/12/015.

Kim B., Hopcroft, M. A., Candler R. N., Jha C. M., Agarwal M., Melamud R., Chandorkar S. A., Yama G. and Kenny T. W. - Temperature dependence of quality factor in MEMS resonators, J. Microelectromech. Syst. 17 (3) (2008) 755-766. https://doi.org/10.1109/JMEMS.2008.924253.

Ghaffari S., Ng E. J., Ahn C. H., Yang Y., Wang S., Hong V. A. and Kenny T. W. - Accurate modeling of quality factor behavior of complex silicon MEMS resonators, J. Microelectromech. Syst. 24 (2) (2015) 276-288. https://doi.org/ 10.1109/JMEMS.2014.2374451.

Tsilingiris P. T. - Thermophysical and transport properties of humid air at temperature range between 0 and 100 C, Energ. Convers. Manage. 49 (5) (2008) 1098-1110. https://doi.org/10.1016/j.enconman.2007.09.015.

Hosseinian E., Theillet P. O. and Pierron O. N. - Temperature and humidity effects on the quality factor of a silicon lateral rotary micro-resonator in atmospheric air, Sens. Actuators. A. Phys. 189 (2013) 380-389. https://doi.org/10.1016/j.sna.2012.09.020.

Hosseinzadegan H., Pierron O. N. and Hosseinian E. - Accurate modeling of air shear damping of a silicon lateral rotary micro-resonator for MEMS environmental monitoring applications, Sens. Actuators. A. Phys. 216 (2014) 342-348. https://doi.org/ 10.1016/j.sna.2014.06.008.

Jan M. T., Ahmad F., Hamid N. H. B., Khir M. H. B. M., Shoaib M. and Ashraf K. - Experimental investigation of moisture and temperature effects on resonance frequency and quality factor of CMOS-MEMS paddle resonator, Microelectron. Reliab 63 (2016) 82-89. https://doi.org/10.1016/j.microrel.2016.05.007.

Hasan M. H. - Influence Of Environmental Conditions On The Response Of MEMS Resonators, Dissertation, University of Nebraska, 2018.

Greenspan L. - Functional Equations for the Enhancement Factors for CO2- Free Moist Air, J. Res. Natl. Inst. Stan. 80A (1) (1976) 41-44. https://doi.org/ 10.6028/jres.080A.007.

Tan Z. - Air pollution and greenhouse gases, Springer Science + Business Media, Singapore, 2014, pp. 33-34.

Leissa A. W. - Vibration of Plates, In: NASA, Washington DC, 1969, pp. 1-6.

Brand O., Dufour I., Heinrich S., Josse F., Fedder G. K., Hierold C., Korvink J. G. andTabata O. - Ressonant MEMS fundamentals, Implementation and Application, WILEY-VCH, 2015.

Reddy J. N. - An introduction to the finite element method, McGraw-Hill, New York, 1993.

Published

2022-08-31

How to Cite

[1]
N. C. Cuong, M. Truong Phan, X. Thang Trinh, Q. . Cuong Le, and V. K. Thanh Ngo, “Effects of temperature and relative humidity on resonant frequency of mems cantilever resonators under atmospheric pressure”, Vietnam J. Sci. Technol., vol. 60, no. 4, pp. 726–738, Aug. 2022.

Issue

Section

Mechanical Engineering - Mechatronics