Correlation between AK7 rs2275554 and male infertility in 421 Vietnamese individuals


Authors

  • Nguyen Phuong Anh Institute of Genome Research, Vietnam Academy of Science and Technology
  • Nong Van Hai Institute of Genome Research, Vietnam Academy of Science and Technology
  • Nguyen Thuy Duong Institute of Genome Research, Vietnam Academy of Science and Technology
DOI: https://doi.org/10.15625/2615-9023/16665

Keywords:

Male infertility, AK7, Vietnam, PCR-RFLP.

Abstract

Male infertility is a global health problem caused by many factors, including primary ciliary dyskinesia (PCD), multiple morphologic abnormalities of the flagella (MMAF), and genetic factors, in which PCD and MMAF have been reported to be associated with variants in the AK7 gene. So, this study aimed to evaluate the association of polymorphisms AK7 rs2275554 with infertile men in the Vietnamese population. Total DNAs were isolated from 421 samples, including 199 males diagnosed with infertility and 222 healthy individuals having at least one child. All 421 samples were applied for genotyping using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Using statistical methods, we showed that the distribution of their genotypes conformed with Hardy-Weinberg equilibrium (p-values > 0.05). There was no association between polymorphism rs2275554 and male infertility in the Vietnamese population (p-values > 0.05). These findings in this study will contribute to the knowledge base about the underlying genetics of male infertility in the Vietnamese population.

References

Core Team R., 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org.

Agarwal A., Mulgund A., Hamada A., Chyatte M. R., 2015. A unique view on male infertility around the globe. Reprod Biol Endocrinol, 13: 37. https://doi.org/10.1186/s12958-015-0032-1

Ben Khelifa M., Coutton C., Zouari R., Karaouzene T., Rendu J., Bidart M., Yassine S., Pierre V., Delaroche J., Hennebicq S., Grunwald D., Escalier D., Pernet-Gallay K., Jouk P. S., Thierry-Mieg N., Toure A., Arnoult C., Ray P. F., 2014. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet, 94(1): 95–104. https://doi.org/10.1016/j.ajhg.2013.11.017

Carnegie G. K., Means C. K., Scott J. D., 2009. A-kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB Life, 61(4): 394–406. https://doi.org/10.1002/iub.168

Curi S. M., Ariagno J. I., Chenlo P. H., Mendeluk G. R., Pugliese M. N., Sardi Segovia L. M., Repetto H. E., Blanco A. M., 2003. Asthenozoospermia: analysis of a large population. Arch Androl, 49(5): 343–349. https://doi.org/10.1080/01485010390219656

Durairajanayagam D., 2018. Lifestyle causes of male infertility. Arab J Urol, 16(1): 10–20. https://doi.org/10.1016/j.aju.2017.12.004

Fernandez-Gonzalez A., Kourembanas S., Wyatt T. A., Mitsialis S. A., 2009. Mutation of murine adenylate kinase 7 underlies a primary ciliary dyskinesia phenotype. Am J Respir Cell Mol Biol, 40(3): 305–313. https://doi.org/10.1165/rcmb.2008-0102OC

Graffelman J., 2015. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. Journal of Statistical Software, 64(3): 1–23. https://www.jstatsoft.org/ index.php/jss/article/view/v064i03

Kumar N. ,Singh A. K., 2015. Trends of male factor infertility, an important cause of infertility: A review of literature. J Hum Reprod Sci, 8(4): 191–196. https://doi.org/10.4103/0974-1208.170370

Leigh M. W., Horani A., Kinghorn B., O’Connor M. G., Zariwala M. A., Knowles M. R., 2019. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. Transl Sci Rare Dis, 4(1–2): 51–75. https://doi.org/10.3233/TRD-190036

Leslie S. W., Siref L. E., Soon-Sutton T. L., Khan M. A. B., 2021. Male Infertility. in StatPearls: Treasure Island (FL).

Lores P., Coutton C., El Khouri E., Stouvenel L., Givelet M., Thomas L., Rode B., Schmitt A., Louis B., Sakheli Z., Chaudhry M., Fernandez-Gonzales A., Mitsialis A., Dacheux D., Wolf J. P., Papon J. F., Gacon G., Escudier E., Arnoult C., Bonhivers M., Savinov S. N., Amselem S., Ray P. F., Dulioust E., Toure A., 2018. Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Genet, 27(7): 1196–1211. https://doi.org/10.1093/hmg/ddy034

Lores P., Dacheux D., Kherraf Z. E., Nsota Mbango J. F., Coutton C., Stouvenel L., Ialy-Radio C., Amiri-Yekta A., Whitfield M., Schmitt A., Cazin C., Givelet M., Ferreux L., Fourati Ben Mustapha S., Halouani L., Marrakchi O., Daneshipour A., El Khouri E., Do Cruzeiro M., Favier M., Guillonneau F., Chaudhry M., Sakheli Z., Wolf J. P., Patrat C., Gacon G., Savinov S. N., Hosseini S. H., Robinson D. R., Zouari R., Ziyyat A., Arnoult C., Dulioust E., Bonhivers M., Ray P. F., Toure A., 2019. Mutations in TTC29, Encoding an Evolutionarily Conserved Axonemal Protein, Result in Asthenozoospermia and Male Infertility. Am J Hum Genet, 105(6): 1148–1167. https://doi.org/10.1016/j.ajhg.2019.10.007

Mata M., Lluch-Estelles J., Armengot M., Sarrion I., Carda C., Cortijo J., 2012. New adenylate kinase 7 (AK7) mutation in primary ciliary dyskinesia. Am J Rhinol Allergy, 26(4): 260–264. https://doi.org/10.2500/ajra.2012.26.3784

Nsota Mbango J. F., Coutton C., Arnoult C., Ray P. F., Toure A., 2019. Genetic causes of male infertility: snapshot on morphological abnormalities of the sperm flagellum. Basic Clin Androl, 29: 2. https://doi.org/10.1186/s12610-019-0083-9

Panayiotou C., Solaroli N., Xu Y., Johansson M., Karlsson A., 2011. The characterization of human adenylate kinases 7 and 8 demonstrates differences in kinetic parameters and structural organization among the family of adenylate kinase isoenzymes. Biochem J, 433(3): 527–534. https://doi.org/10.1042/BJ20101443

Rentzsch P., Schubach M., Shendure J., Kircher M., 2021. CADD-Splice—improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Medicine, 13(1): 31. https://doi.org/10.1186/s13073-021-00835-9

Ringers C., Olstad E. W., Jurisch-Yaksi N., 2020. The role of motile cilia in the development and physiology of the nervous system. Philos Trans R Soc Lond B Biol Sci, 375(1792): 20190156. https://doi.org/10.1098/rstb.2019.0156

Sironen A., Shoemark A., Patel M., Loebinger M. R., Mitchison H. M., 2020. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci, 77(11): 2029–2048. https://doi.org/10.1007/s00018-019-033 89-7

Tomas J. Aragon, Michael P. Fay, Daniel Wollschlaeger, Omidpanah A., 2020. Epitools: Epidemiology Tools. R package version 0.5-10.1. https://CRAN.R-project.org/package=epitools.

Vadnais M. L., Cao W., Aghajanian H. K., Haig-Ladewig L., Lin A. M., Al-Alao O., Gerton G. L., 2014. Adenine nucleotide metabolism and a role for AMP in modulating flagellar waveforms in mouse sperm. Biol Reprod, 90(6): 128. https://doi.org/10.1095/biolreprod.113.114447

Wang W. L., Tu C. F., Tan Y. Q., 2020. Insight on multiple morphological abnormalities of sperm flagella in male infertility: what is new? Asian J Androl, 22(3): 236–245. https://doi.org/10.4103/aja.aja_53_19

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Abstract View: 177
PDF Downloaded: 99

Published

30-03-2022

How to Cite

Phuong Anh, N., Van Hai, N., & Thuy Duong, N. . (2022). Correlation between AK7 rs2275554 and male infertility in 421 Vietnamese individuals. Academia Journal of Biology, 44(1), 107–114. https://doi.org/10.15625/2615-9023/16665

Issue

Section

Articles

Most read articles by the same author(s)