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Abstract. This study investigates the static and free vibration responses of orthotropic
laminated composite spherical shells using various refined shear deformation theories.
Displacement-based refined shear deformation theories are presented herein for the anal-
ysis of laminated composite spherical shells via unified mathematical formulations. Equa-
tions of motion associated with the present theory are derived within the framework
of Hamilton’s principle. Analytical solutions for the static and free vibration problems
of laminated spherical shells are obtained using Navier’s technique for the simply sup-
ported boundary conditions. Few higher order and classical theories are recovered from
the present unified formulation; however, many other theories can be recovered from the
present unified formulation. The numerical results are obtained for symmetric as well
as anti-symmetric laminated shells. The present results are compared with previously
published results and 3-D elasticity solution. From the numerical results, it is concluded
that the present theories are in good agreement with other higher order theories and 3-D
solutions.

Keywords: refined shell theories, shear deformation, laminated shells, static analysis, free
vibration.

1. INTRODUCTION

The orthotropic laminated shells are used in many engineering structures due to
their higher strength-to-weight and stiffness-to-weight ratios. Laminated shells are of-
ten subjected to static and dynamic loading. Therefore, static and free vibration analy-
sis of laminated shells is an active area of research in the last few decades. Transverse
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shear deformation plays an important role in the accurate static and vibration analysis
of orthotropic laminated shells. Laminated shells are analyzed using the classical the-
ories [1, 2] and higher order refined theories. Since classical theories are inaccurate to
predict the accurate structural response, refined theories are required for the analysis of
laminated shells which take into account the effects of transverse shear deformations.
Refer review articles of Sayyad and Ghugal [3], Sayyad and Ghugal [4], Qatu [5, 6], and
Qatu et al. [7]. Three-dimensional elasticity solutions for isotropic and laminated shells
are presented by Bhimaraddi [8] and, Bhimaraddi and Chandrashekhara [9]. Reddy [10]
and, Reddy and Liu [11] have presented the static and free vibration analysis of laminated
composite shells using third order shear deformation theory which satisfies the traction
free boundary conditions. A unified formulation of refined theories for the static and free
vibration analysis of laminated cylindrical shells is presented by Soldatos and Timarci
[12], and Timarci and Soldatos [13]. Pradyumna and Bandyopadhyay [14] presented
static and free vibration analysis of laminated composite shells using a finite element
method based on higher-order shear deformation theory. Mantari and Soares [15,16] and
Mantari et al. [17, 18] presented deflection and frequency analysis of laminated compos-
ite shells using non-polynomial shear deformation theories. Khare et al. [19] and Garg et
al. [20] have presented higher order shear and normal deformation theory for the static
and free vibration analysis of laminated composite shells. Sayyad and Ghugal [21–24]
have developed a trigonometric shear deformation theory for the static and free vibra-
tion analysis of laminated composite plates which is recently extended by Sayyad and
Ghugal [25] for the static and free vibration analysis of functionally graded sandwich
curved beams. Carrera and Brischetto [26,27] and Carrera et al. [28,29] have applied Car-
rera’s unified formulation (CUF) for the mechanical and thermal analysis of laminated
composite and sandwich shells. Tornabene [30,31] have presented a vibration analysis of
laminated composite shells resting on elastic foundation using the first-order shear de-
formation theory and the generalized differential quadrature (GDQ) method. Tornabene
et al. [32, 33] have presented the static analysis of doubly curved anisotropic shell panels
using Carrera’s unified formulation and the differential quadrature method. Tornabene
et al. [34], Viola et al. [35], Brischetto and Tornabene [36] have presented a new procedure
to recover interlaminar stresses in laminated composite and sandwich shells and panels.
Sayyad and Ghugal [37] have developed a unified formulation for the static and free vi-
bration analysis of laminated composite plates and shells. Naik and Sayyad [38, 39] and,
Shinde and Sayyad [40, 41] have developed a fifth-order shear and normal deformation
theory for the static analysis of laminated composite plates/shells subjected to mechan-
ical or thermal loadings. Monge et al. [42] have presented bending analysis of doubly
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curved laminated shells using refined hybrid models based on Navier’s technique. The
objectives of the present study are as follows.

The first objective of this study is to present mathematical formulations of various
polynomial and non-polynomial type refined shell theories via unified formulation. The
parabolic shell theory (PST), trigonometric shell theory (TST), hyperbolic shell theory
(HST), exponential shell theory (EST), first-order shell theory (FST), and classical shell
theory (CST) are recovered from the present unified formulation. The second objective
of the present study is to present deflection, stresses and fundamental frequencies of or-
thotropic laminated shells. The third objective of this study is to recover transverse shear
stresses in orthotropic laminated shells from equilibrium equations of the 3-D elasticity
problem. Governing equations of motion are derived within the framework of Hamil-
ton’s principle. Navier’s technique is employed to obtain analytical solutions for simply
supported shells. The present results are compared with exact elasticity solutions and
found in good agreement. Authors dedicate this paper to Professor J.N. Reddy on the
Occasion of his 75th birthday and his outstanding contribution in the area of mechanics
of laminated plates and shells [43–45].

2. THE MATHEMATICAL MODELING

Fig. 1 shows a laminated shell under consideration in the Cartesian coordinate sys-
tem, x and y curves in the figure represent lines of principal curvature; R1 and R2 are the
principal radii of curvature. A laminated shell is made up of fibrous composite mate-
rial and composed of several layers. It is assumed that all layers of laminated shells are
perfectly bonded. The top surface of the laminates shell is subjected to transverse load q
(x, y). Instructions for Authors 3 

 
Fig. 1. Laminated shell under consideration 
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Using the strain–displacement relations from the theory of elasticity, the following nonzero 
strain quantities are obtained. 
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A mathematical formulation of various refined theories is presented in this study
using a unified displacement field

u (x, y, z, t) =
(

1 +
z

R1

)
u0 (x, y, t)− z

∂w0

∂x
+ f (z) ϕ (x, y, t) ,

v (x, y, z, t) =
(

1 +
z

R2

)
v0 (x, y, t)− z

∂w0

∂y
+ f (z)ψ (x, y, t) ,

w (x, y, t) = w0 (x, y, t) ,

(1)

where u, v and w are the displacements of any arbitrary point within the shell domain in
the x-, y- and z-directions, respectively; u0, v0, w0 are the displacements of a point on the
mid-plane of the shell domain in the x-, y- and z-directions, respectively. f (z) represents
shape functions which ensures traction free boundary conditions on the top and bottom
surfaces of the shell. Various higher order shear deformation theories (HSDTs) and clas-
sical theories are recovered from the present unified displacement field after selecting
following shape functions

PST: f (z) = z − (4/3)
(
z3/h2) ,

TST: f (z) = (h/π) sin (πz/h) ,

HST: f (z) = z cosh (1/2)− h sinh (z/h) ,

EST: f (z) = z e−2(z2/h2),

FST: f (z) = z,

CST: f (z) = 0.
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Using the strain-displacement relations from the theory of elasticity, the following
nonzero strain quantities are obtained

εx =
∂u
∂x

+
w
R1

=
∂u0

∂x
+

w0

R1
− z

∂2w0

∂x2 + f (z)
∂ϕ

∂x
,

εy =
∂v
∂y

+
w
R2

=
∂v0

∂y
+

w0

R2
− z

∂2w0

∂y2 + f (z)
∂ψ

∂y
,

γxy =
∂u
∂y

+
∂v
∂x

=
∂u0

∂y
+

∂v0

∂x
− 2z

∂2w0

∂x∂y
+ f (z)

∂ϕ

∂y
+

∂ψ

∂x
,

γxz =
∂u
∂z

+
∂w
∂x

− u0

R1
= f ′ (z) ϕ,

γyz =
∂v
∂z

+
∂w
∂y

− v0

R2
= f ′ (z)ψ.

(2)

The in-plane normal and shear stresses for the kth lamina are obtained using the
following constitutive relations

σx
σy
τxy
τxz
τyz



(k)

=


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44


(k)

εx
εy

γxy
γxz
γyz



(k)

, (3)

where Qij are the stiffness coefficients

Q11 =
E1

1 − µ12µ21
, Q12 =

µ21E1

1 − µ12µ21
, Q22 =

E2

1 − µ12µ21
,

Q66 = G12, Q55 = G13, Q44 = G23.
(4)

Stress resultants associated with the present unified displacement field are obtained
by integrating stresses over the thickness of the shell

{
Nx Mb

x Ms
x
}T

=
N

∑
k=1

∫ hk+1

hk

{
1 z f (z)

}T
σk

x dz,

{
Ny Mb

y Ms
y

}T
=

N

∑
k=1

∫ hk+1

hk

{
1 z f (z)

}T
σk

y dz,

{
Nxy Mb

xy Ms
xy

}T
=

N

∑
k=1

∫ hk+1

hk

{
1 z f (z)

}T
τk

xy dz,

{
Qx Qy

}T
=

N

∑
k=1

∫ hk+1

hk

{
τxz τyz

}T f ′ (z) dz,

(5)
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where
(

Nx, Ny, Nxy
)

are the axial force,
(

Mb
x, Mb

y, Mb
xy

)
and

(
Ms

x, Ms
y, Ms

xy

)
are the bend-

ing moments, and
(
Qx, Qy

)
are the shear forces. A superscript ‘b’ is corresponding to

classical bending and superscript ‘s’ is the corresponding refinement due to shear defor-
mation. The equations of motion are derived from Hamilton’s principle∫ t2

t1

(δU − δV + δK)dt = 0, (6)

where δU is the strain energy, δV is the potential energy and δK is the kinetic energy. The
symbol δ is a variational operator; t1 and t2 are the initial and final times. Substituting
values of all energies, Eq. (6) leads to the following form∫

dv
(σxδεx + τzxδγxz)dv −

∫ q

Ω
(x, y) δw dΩ + ρ

∫
dv

(
∂2u
∂t2 δu +

∂2v
∂t2 δv +

∂2w
∂t2 δw

)
dv = 0,

(7)

The equations of motion of the present refined theories are obtained by integrating
the Eq. (7) by parts and setting the coefficients of unknown variables equal to zero

A11
∂2u0

∂x2 + A66
∂2u0

∂y2 + (A12 + A66)
∂2v0

∂x∂y
+

(
A11

R1
+

A12

R2

)
∂w0

∂x
− B11

∂3w0

∂x3

− (B12 + 2B66)
∂3w0

∂x∂y2 + As11
∂2ϕ

∂x2 + As66
∂2ϕ

∂y2 + (As12 + As66)
∂2ψ

∂x∂y

−
(

I1 + 2
I2

R1
+

I3

R2
1

)
∂2u0

∂t2 +

(
I2 +

I3

R1

)
∂3w0

∂x∂t2 −
(

I4 +
I5

R1

)
∂2ϕ

∂t2 = 0,

(8)

(A12 + A66)
∂2u0

∂x∂y
+ A22

∂2v0

∂y2 + A66
∂2v0

∂x2 − B22
∂3w0

∂y3 − (B12 + 2B66)
∂3w0

∂x2∂y

+

(
A12

R1
+

A22

R2

)
∂w0

∂y
+ (As12 + As66)

∂2ϕ

∂x∂y
+ As22

∂2ψ

∂y2 + As66
∂2ψ

∂x2

−
(

I1 + 2
I2

R2
+

I3

R2
2

)
∂2v0

∂t2 +

(
I2 +

I3

R2

)
∂3w0

∂y∂t2 −
(

I4 +
I5

R2

)
∂2ψ

∂t2 = 0,

(9)
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B11
∂3u0

∂x3 + (B12 + 2B66)
∂3u0

∂x∂y2 −
(

A11

R1
+

A12

R2

)
∂u0

∂x
+ B22

∂3v0

∂y3 + (B12 + 2B66)
∂3v0

∂x2∂y

−
(

A12

R1
+

A22

R2

)
∂v0

∂y
+

(
2B11

R1
+

2B12

R2

)
∂2w0

∂x2 − D11
∂4w0

∂x4 − 2 (D12 + 2D66)
∂4w0

∂x2∂y2 − D22
∂4w0

∂y4

+

(
2B12

R1
+

2B22

R2

)
∂2w0

∂y2 −
(

A11

R2
1
+ 2

A12

R1R2
+

A22

R2
2

)
w0 + Bs11

∂3ϕ

∂x3 + (Bs12 + 2Bs66)
∂3ϕ

∂x∂y2

−
(

As11

R1
+

As12

R2

)
∂ϕ

∂x
+ Bs22

∂3ψ

∂y3 + (Bs12 + 2Bs66)
∂3ψ

∂x2∂y
−
(

As12

R1
+

As22

R2

)
∂ψ

∂y
−
(

I2 +
I3

R1

)
∂3u0

∂x∂t2

+ I3
∂4w0

∂x2∂t2 − I5
∂3ϕ

∂x∂t2 −
(

I2 +
I3

R2

)
∂3v0

∂y∂t2 + I3
∂4w0

∂y2∂t2 − I5
∂3ψ

∂y∂t2 − I1
∂2w0

∂t2 − q = 0,

(10)

As11
∂2u0

∂x2 + As66
∂2u0

∂y2 + (As12 + As66)
∂2v0

∂x∂y
− Bs11

∂3w0

∂x3 − (Bs12 + 2Bs66)
∂3w0

∂x∂y2

+

(
As11

R1
+

As12

R2

)
∂w0

∂x
+ Ass11

∂2ϕ

∂x2 + Ass66
∂2ϕ

∂y2 − Acc55ϕ + (Ass12 + Ass66)
∂2ψ

∂x∂y

−
(

I4 +
I5

R1

)
∂2u0

∂t2 + I5
∂3w0

∂x∂t2 − I6
∂2ϕ

∂t2 = 0,

(11)

(As12 + As66)
∂2u0

∂x∂y
+ As66

∂2v0

∂x2 + As22
∂2v0

∂y2 − Bs22
∂3w0

∂y3 − (Bs12 + 2Bs66)
∂3w0

∂x2∂y

+

(
As12

R1
+

As22

R2

)
∂w0

∂y
+ (Ass12 + Ass66)

∂2ϕ

∂x∂y
+ Ass22

∂2ψ

∂y2 + Ass66
∂2ψ

∂x2 − Acc55ψ

−
(

I4 +
I5

R2

)
∂2v0

∂t2 + I5
∂3w0

∂y∂t2 − I6
∂2ψ

∂t2 = 0,

(12)

where Aij, Bij, Dij, Asij, Bsij, Assij, Accij are the shell stiffnesses

{
Aij Bij Dij

}
=

N

∑
k=1

hk+1∫
hk

Qk
ij
{

1 z z2}dz,

{
Asij Bsij Assij

}
=

N

∑
k=1

hk+1∫
hk

Qk
ij f (z)

{
1 z f (z)

}
dz,

Accij =
N

∑
k=1

hk+1∫
hk

Qk
ij
[

f ′ (z)
]2 dz.

(13)
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3. NAVIER’S SOLUTIONS

Analytical solutions for the static and free vibration problems are obtained using
Navier’s technique for the simply supported boundary conditions stated in Eq. (14)

Nx
v0
w
ψ

Mb
x

Ms
x


x=0,a

= 0 and



Ny
u0
w
ϕ

Mb
y

Ms
y


y=0,b

= 0. (14)

It is assumed that the shell is subjected to transverse load on the top surface. This
load is expressed using a double trigonometric series

q (x, y) =
∞

∑
m=1

∞

∑
n=1

qmn sin αx sin βy, (15)

where, α = mπ/a, β = nπ/b, qmn is Fourier coefficient of transverse load, (m, n) are odd
positive integers and q0 is the maximum intensity of load. In the case of sinusoidally
distributed loading qmn = q0 and m = n = 1. As per Navier’s technique, the unknown
variables are also presented in the double trigonometric forms which satisfy the simply
supported boundary conditions exactly

u0
v0
w0
ϕ
ψ

 =
∞

∑
m=1,3,5

∞

∑
n=1,3,5


umn cos αx sin βy
vmn sin αx cos βy
wmn sin αx sin βy
ϕmn cos αx sin βy
ψmn sin αx cos βy

 sin ωt, (16)

where ω represents the natural frequency, and umn, vmn, wmn, ϕmn, ψmn are the unknowns.
Substitution of Eqs. (15) and (13) into Eqs. (8)–(12) leads to the following systems of equa-
tions.

Static analysis:

[K] {∆} = {F} . (17)

Free vibration analysis: {
[K]− ω2 [M]

}
{∆} = {0} , (18)

where [K], [M], {∆} and {F} are the stiffness matrix, mass matrix, a vector of unknowns
and force vector, respectively.
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Elements of stiffness matrix [K] are as follows

K11 = A11α2 + A66β2, K12 = (A12 + A66) αβ,

K13 = −
[

A11

R1
α +

A12

R2
α + B11α3 − (B12 + 2B66) αβ2

]
,

K14 = As11α2 + As66β2, K15 = (As12 + As66) αβ,

K22 = A66α2 + A22β2,

K23 = −
[

A12

R1
β +

A22

R2
β + B22β3 − (B12 + 2B66) α2β

]
,

K24 = (As12 + As66) αβ, K25 = As66α2 + As22β2,

K33 = D11α4 + 2 (D12 + 2D66) α2β2 + D22β4 +

(
2B11

R1
+

2B12

R2

)
α2

+

(
2B12

R1
+

2B22

R2

)
β2 +

(
A11

R2
1
+ 2

A12

R1R2
+

A22

R2
2

)
w0,

K34 = −
[

Bs11α3 + (Bs12 + 2Bs66) αβ2 +

(
As11

R1
+

As12

R2

)
α

]
,

K35 = −
[

Bs22β3 + (Bs12 + 2Bs66) α2β +

(
As12

R1
+

As22

R2

)
β

]
,

K44 = Ass11α2 + Ass66β2 + Acc55,

K45 = (Ass12 + Ass66) αβ, K55 = Ass22β2 + Ass66α2 + Acc55.

(19)

The stiffness matrix [K] is a symmetric matrix. Elements of mass matrix [M] are

M11 =

(
I1 + 2

I2

R1
+

I3

R2
1

)
, M12 = 0, M13 = −

(
I2 +

I3

R1

)
α,

M14 =

(
I4 +

I5

R1

)
, M15 = 0, M22 =

(
I1 + 2

I2

R2
+

I3

R2
2

)
,

M23 = −
(

I2 +
I3

R2

)
, M24 = 0, M25 =

(
I4 +

I5

R2

)
, M33 = I3α2 + I3β2 + I1,

M34 = −I5α, M35 = −I5β, M44 = I6, M45 = 0, M55 = I6,

(20)

where

{
I1 I2 I3

}
=

N

∑
k=1

ρk

hk+1∫
hk

{
1 z z2}dz,

{
I4 I5 I6

}
=

N

∑
k=1

ρk

hk+1∫
hk

f (z)
{

1 z f (z)
}

dz,

(21)
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{∆} =


umn
vmn
wmn
ϕmn
ψmn

 and {F} =


0
0
q0
0
0

 . (22)

4. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the accuracy of the various refined shell theories has been checked
for the static and free vibration responses of laminated spherical shells only. Deflection
and stresses are determined for sinusoidally distributed loadings. Modulus of elasticity
and Poisson’s ratio for the isotropic shells are assumed as (E =) 210 GPa and (µ =) 0.3,
respectively. In the case of the orthotropic and laminated spherical shells, the following
material properties are used

E1

E2
= 25,

E3

E2
= 1,

G12

E2
=

G13

E2
= 0.5,

G23

E2
= 0.2, µ12 = 0.25. (23)

To maintain the continuity of interlaminar stresses at the layer interface, transverse
shear stresses of kth lamina are evaluated from 3-D stress equilibrium equations of elas-
ticity neglecting the body forces

τ
(k)
xz = −

N

∑
k=1

zk+1∫
zk

(
∂σ

(k)
x

∂x
+

∂τ
(k)
xy

∂y

)
dz + C1 and τ

(k)
yz = −

N

∑
k=1

zk+1∫
zk

(
∂σ

(k)
y

∂y
+

∂τ
(k)
xy

∂x

)
dz + C2.

(24)

The constants of integrations can be determined by imposing the continuity and
boundary conditions at the appropriate locations. The following non-dimensional forms
are used to present the numerical results

w̄ =
wE2

q0
, σ̄x =

σxh2

q0a2 , τ̄xz =
τxzh
q0a

. (25)

Table 1 shows the comparison of central deflection of isotropic and orthotropic spher-
ical shells (R1 = R2 = R) subjected to sinusoidally distributed loadings, respectively.
Central deflections of the middle surface of the shell (x = a/2, y = b/2, z = 0) are
obtained for various h/a and R/a ratios. The numerical results obtained by using the
present refined shell theories (PST, TST, HST, EST, FST, CST) are compared with the 3-
D elasticity solution given by Bhimaraddi [8]. Examination of Table 1 reveals that the
present results are in good agreement with those obtained by 3-D elasticity solution. It
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Table 1. Comparison of central deflection (w̄) for isotropic and orthotropic spherical shells with
different h/a and R/a ratios (a/b = 1, R1 = R2 = R)

R/a Theory
Isotropic Orthotropic

h/a = 0.01 h/a = 0.1 h/a = 0.15 h/a = 0.01 h/a = 0.1 h/a = 0.15

1 3-D 100.59 8.7095 4.9497 75.397 4.7117 2.5641
PST 99.652 7.4756 3.8931 74.120 3.4471 1.7229
TST 99.652 7.4754 3.8928 74.206 3.4536 1.7204
HST 99.652 7.4756 3.8931 74.206 3.4553 1.7231
EST 99.652 7.4759 3.8935 74.206 3.4525 1.7143
FST 99.652 7.4588 3.8626 74.205 3.3561 1.6322
CST 99.644 7.3702 3.6979 74.200 2.7447 1.0191

2 3-D 396.45 18.451 7.7240 285.72 5.9693 2.6788
PST 394.40 17.014 6.9265 282.32 5.2610 2.3180
TST 394.40 17.013 6.9254 282.32 5.2571 2.3134
HST 394.40 17.014 6.9265 282.32 5.2612 2.3183
EST 394.40 17.016 6.9276 282.32 5.2547 2.3025
FST 394.40 16.927 6.8306 282.30 5.0346 2.1567
CST 394.37 16.480 6.3322 282.24 3.7736 1.2015

3 3-D 875.36 23.381 8.5912 593.43 6.2215 2.6635
PST 872.07 22.278 8.0945 587.39 5.8248 2.4764
TST 872.07 22.277 8.0930 587.39 5.8199 2.4711
HST 872.07 22.278 8.0945 587.39 5.8249 2.4767
EST 872.07 22.281 8.0960 587.39 5.8170 2.4587
FST 872.07 22.129 7.9639 587.32 5.5485 2.2931
CST 872.00 21.371 7.2945 587.00 4.0551 1.2427

4 3-D 1518.3 25.785 8.9235 953.25 6.3014 2.6494
PST 1513.7 24.984 8.6021 944.66 6.0517 2.5371
TST 1513.7 24.982 8.6005 944.66 6.0465 2.5315
HST 1513.7 24.984 8.6021 944.66 6.0519 2.5374
EST 1513.7 24.987 8.6039 944.66 6.0433 2.5185
FST 1513.7 24.797 8.4548 944.49 5.7541 2.3451
CST 1513.6 23.849 7.7043 943.66 4.1638 1.2578

5 3-D 2301.4 27.061 9.0755 1325.5 6.3332 2.6393
PST 2295.5 26.472 8.8593 1314.8 6.1629 2.5662
TST 2295.5 26.470 8.8576 1314.8 6.1575 2.5605
HST 2295.5 26.472 8.8593 1314.8 6.1631 2.5665
EST 2295.5 26.476 8.8612 1314.8 6.1542 2.5472
FST 2295.5 26.262 8.7031 1314.4 5.8544 2.3699
CST 2295.3 25.201 7.9099 1312.9 4.2161 1.2649



108 Atteshamuddin S. Sayyad, Yuwaraj M. Ghugal

is observed from Table 1 that the central deflection increases as h/a and R/a ratios in-
crease. The central deflection of the shell decreases with increase in the h/a ratio whereas
increases with an increase in R/a ratio. For the same dimensions and loading condi-
tions, orthotropic shells predict less deflection compared to isotropic shells. The FST and
CST underestimate the transverse central deflections for all h/a and R/a ratios due to
neglecting transverse shear deformation.

Table 2 shows a comparison of central deflections for laminated composite spher-
ical shells subjected to sinusoidally distributed loadings. Central deflections are ob-
tained for anti-symmetric two-ply (0◦/90◦) laminated shells and symmetric three-ply
(0◦/90◦/0◦) laminated shells. Examination of Table 2 shows that the symmetric lami-
nation scheme (0◦/90◦/0◦) of laminated shells predicts low central deflection compared
to anti-symmetric (0◦/90◦) laminated shells. This is due to the presence of the bending-
stretching coupling effect in the anti-symmetric laminated shells. The transverse cen-
tral deflections predicted by the present refined theories are in close agreement with
the exact 3-D elasticity solution. In both the laminated shells, classical theories (FST
and CST) underestimate the transverse central deflections due to the absence of trans-
verse shear deformation. Figs. 2–7 show through-the-thickness distributions of in-plane
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Table 2. Comparison of central deflection (w̄) for laminated spherical shells with different h/a
and R/a ratios (a/b = 1, R1 = R2 = R)

R/a Theory
Two-ply (0◦/90◦) Three-ply (0◦/90◦/0◦)

h/a = 0.01 h/a = 0.1 h/a = 0.15 h/a = 0.01 h/a = 0.1 h/a = 0.15

1 3-D 54.129 4.6920 2.7386 54.252 4.0811 2.4345
PST 53.503 3.7683 1.9578 53.490 3.0770 1.6564
TST 53.503 3.7674 1.9563 53.490 3.0872 1.6649
HST 53.503 3.7656 1.9534 53.490 3.0760 1.6556
EST 53.503 3.7535 1.9330 53.490 3.0948 1.6673
FST 53.499 3.8167 2.0495 53.489 2.9135 1.5014
CST 53.493 3.5718 1.6769 53.486 2.4008 0.9438

2 3-D 212.33 8.8092 3.8190 208.36 6.3134 3.0931
PST 210.83 7.8108 3.2481 206.33 5.3616 2.5253
TST 210.83 7.8054 3.2432 206.33 5.3927 2.5451
HST 210.83 7.7989 3.2357 206.33 5.3587 2.5235
EST 210.83 7.7360 3.1737 206.33 5.4159 2.5508
FST 210.82 8.0897 3.5484 206.32 4.8842 2.1818
CST 210.79 7.1163 2.5835 206.27 3.5965 1.1739

3 3-D 456.46 10.512 4.0856 441.81 6.9888 3.2228
PST 462.92 9.7471 3.6996 438.22 6.2163 2.7970
TST 462.92 9.7383 3.6930 438.22 6.2582 2.8213
HST 462.92 9.7286 3.6834 438.22 6.2124 2.7948
EST 462.92 9.6277 3.6019 438.22 6.2894 2.8283
FST 462.90 10.205 4.1042 438.21 5.5835 2.3817
CST 462.82 8.7192 2.8709 437.92 3.9619 1.2294

4 3-D 799.81 11.263 4.1758 727.62 7.7476 3.2605
PST 796.05 10.673 3.8888 722.36 6.5837 2.9065
TST 796.05 10.662 3.8815 722.36 6.6307 2.9327
HST 796.05 10.651 3.8709 722.36 6.5793 2.9041
EST 796.05 10.528 3.7803 722.36 6.6657 2.9403
FST 796.04 11.233 4.3423 722.35 5.8781 2.4606
CST 795.86 9.4655 2.9872 721.54 4.1080 1.2501

5 3-D 1198.7 11.639 4.2131 1039.0 7.3674 3.2736
PST 1193.6 11.164 3.9830 1032.1 6.7688 2.9601
TST 1193.6 11.152 3.9754 1032.1 6.8185 2.9873
HST 1193.6 11.139 3.9643 1032.1 6.7642 2.9576
EST 1193.6 11.005 3.8691 1032.1 6.8556 2.9952
FST 1193.5 11.783 4.4621 1032.0 6.0252 2.4989
CST 1193.3 9.8559 3.0443 1030.4 4.1794 1.2599
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and transverse stresses of laminated composite spherical shells under sinusoidally dis-
tributed load. Maximum stresses are observed in 0◦ layers whereas minimum stresses
are observed in 90◦ layers.
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Table 3. Non-dimensional fundamental frequencies (ω̄) of laminated composite spherical shells
with different h/a and R/a ratios (h/a = 0.1, a/b = 1, R1 = R2 = R)

R/a Theory Isotropic Orthotropic 0◦/90◦ 0◦/90◦/0◦

1 PST 0.17764 16.0735 14.930 16.5745
TST 0.17764 16.0704 14.930 16.5473
HST 0.17765 16.0849 14.932 16.5769
EST 0.17766 16.1080 14.942 16.5618
FST 0.17782 16.3042 14.958 17.0261
CST 0.17877 17.9837 15.268 18.7091

2 PST 0.12151 13.5405 10.988 13.3159
TST 0.12151 13.5365 10.981 13.2776
HST 0.12152 13.5552 10.983 13.3193
EST 0.12154 13.5850 11.008 13.2982
FST 0.12181 13.8371 11.007 13.9454
CST 0.12336 15.9408 11.466 16.2058

3 PST 0.10681 12.9646 9.9408 12.5105
TST 0.10681 12.9603 9.9445 12.4688
HST 0.10682 12.9802 9.9496 12.5142
EST 0.10685 13.0119 9.9713 12.4912
FST 0.10715 13.2790 9.9651 13.1945
CST 0.10896 15.4918 10.475 15.6192

4 PST 0.10107 12.7525 9.5370 12.2064
TST 0.10106 12.7482 9.5418 12.1633
HST 0.10108 12.7684 9.5464 12.2103
EST 0.10111 12.8009 9.5696 12.1866
FST 0.10143 13.0739 9.5629 12.9125
CST 0.10336 15.3282 10.091 15.4017

5 PST 0.09828 12.6524 9.3420 12.0613
TST 0.09827 12.6480 9.3472 12.0175
HST 0.09828 12.6685 9.3529 12.0653
EST 0.09829 12.7013 9.3754 12.0412
FST 0.09868 12.9771 9.3670 12.7782
CST 1.10064 15.2513 9.9097 15.2988

Table 3 shows a comparison of fundamental frequencies for isotropic, orthotropic
and laminated composite spherical shells. The fundamental frequencies are presented in
the following non-dimensional forms.

Isotropic Shells: ω̄ = ωh
√

ρ

G
,
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Laminated Shells: ω̄ = ω
a2

h

√
ρ

E2
.

The numerical results obtained using the present refined theories. It is observed
that CST overestimates the fundamental frequencies whereas refined theories predict the
more or less same results.

5. CONCLUSIONS

The static and free vibration responses of orthotropic laminated composite shells
are investigated in this study using various refined theories. Analytical solutions are
obtained using Navier’s technique for the simply supported boundary conditions. The
present results are compared with the exact 3-D elasticity solution and found in good
agreement with those. Based on the numerical results and discussion presented, the fol-
lowing conclusions are drawn:

- The non-dimensional central deflection values are higher for anti-symmetric lami-
nation shells and lower for the symmetric laminated shells.

- The values of non-dimensional central deflection increases with increase in radii of
curvature and decreases with increase in thickness to length (h/a) ratios.

- Through-the-thickness distributions of stresses show that maximum values of stresses
are observed in 0◦ layers whereas minimum values of stresses are observed in 90◦ layers.

- Non-dimensional fundamental frequencies decrease with increase in the radii of
curvature to length ratio (R/a).

The present refined theories can be applied for the static and free vibration analysis
of other type of shells such as angle-ply laminated shells, sandwich shells, functionally
graded shells, etc.
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