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Abstract. A recently proposed protocol for two parties to securely and simultaneously exchange
inequivalent quantum states under the same control of a third party [Int. J. Theor. Phys. 60 (2021)
47] is revisited. It is shown in this paper that the required tasks are equally well accomplished with
a nonlocal resource which is greatly economized by rationally exploiting local resources. Further-
more, the economized nonlocal resource with appropriate local operations on local resources also
allows exchanging inequivalent states other than those previously considered.
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I. INTRODUCTION

Entanglement [1, 2], thanks to its instantaneous nonclassical correlation and distance-
independent spooky action, has been recognized as an incredible nonlocal resource enabling, only
by local operations and classical communication (LOCC), execution of various global tasks in the
quantum world that have no counterparts in the classical world. In a global task within a quan-
tum network there are a number of remote parties who are authorized to participate in the task.
However, there are also unauthorized parties who aim to intervene into the task. Good quantum
protocols for a given task should be designed such that only the authorized parties are able to
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manage the task and any interventions of any unauthorized parties are detectable by the authorized
parties. That is, a good protocol has to be secure with respect to any outsiders’ attacks. Because
only LOCC is allowed, entanglement must be shared beforehand among all the authorized par-
ties, who are far apart from each other, and entanglement is treated as a nonlocal resource. For
a perfect performance it commonly demands that the nonlocal resource is a maximally entangled
state. More concretely, after having firmly shared a maximally entangled state, the authorized
parties do not need to gather together but just stay in their own labs to do in-spot necessary oper-
ations (applying unitary operators or/and carrying out quantum measurements) and then publicly
broadcast via insecure yet reliable classical communication channels the obtained measurements’
outcomes followed by some conditioned local operations. As an illustration, for Alice to securely
transfer to her remote partner Bob an unknown quantum information hidden in a quantum bit
(qubit) without physically sending the qubit, the two parties have to share in advance a two-qubit
maximally entangled state (called EPR pair which was used by Einstein, Podolsky and Rosen in
their 1935’s paper [1]). In this case the entanglement sharing implies that each party holds a qubit
of the EPR pair. Then Alice makes a joint measurement (called Bell measurement [3]) on her
own qubit and the qubit of the EPR pair that she holds. The Bell measurement random outcome
can be unambiguously identified by two classical bits (cbits) which are by no means related to
content of the information previously contained in Alice’s original qubit. Conditioned on the two
cbits that Alice announces, Bob is able to ”open” the desired information from the qubit of the
EPR pair that he holds. Thus, the information is securely and faithfully ”flown” from a qubit at
Alice’s to another qubit at Bob’s, without any real matter portation. Such a quantum intriguing
protocol is now widely known under a quite fictitious name ’quantum teleportation’ first invented
in 1993 [4]. For global tasks involving many participants, such as controlled teleportation [5, 6],
quantum secret sharing [7], joint remote state preparation [8, 9] and others, multiqubit maximally
entangled states are needed. In some tasks one authorized party may hold more than one qubit of
the shared multiqubit entanglement.

The trouble is that the authorized parties are usually located at large (even possibly space-
like) distances and, due to unavoidable interaction with surrounding environments, after an ac-
tual entanglement distribution process the entanglement degree becomes degraded (i.e., the initial
maximally entangled state turns out to be a nonmaximally entangled one) and the entanglement
degradation rate grows exponentially with distance that badly influences success and quality of
the intended task. Generally, when the quantum channel suffers from a phase damping noise
the entangled state takes an infinite time to become completely separable, a phenomenon called
entanglement asymptotic death (EAD), but when the noise is of amplitude damping type the en-
tanglement may vanish suddenly, a phenomenon called entanglement sudden death (ESD) [10].
In cases both phase damping and amplitude damping are simultaneously active then the transition
of entanglement to complete separability may be either asymptotic or sudden depending on the
entangled state under consideration [11]. To overcome such a negative affect of the environment
one can first process the entanglement sharing repeatedly so that many copies of degraded en-
tangled states are shared and then implement a LOCC-assisted method to transform these many
degraded nonmaximally entangled states into a desired maximally entangled one. This procedure
is referred to as entanglement distillation, which was originally devised in [12] for pure states
and in [13] for mixed states. Despite the usefulness of entanglement distillation procedure, its
overall cost is high because many rounds of entanglement shares and many applications of local
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operations/measurements as well as a lot of classical communication are consumed. Also, the cost
greatly increases with the number of qubits that comprise the interested entangled state. Therefore,
economizing nonlocal resource (i.e., the number of shared entangled qubits) is extremely crucial,
especially when dealing with multiqubit entangled resource.

In this paper, we revisit a recently published protocol on ‘Two-Way Remote Preparations of
Inequivalent Quantum States Under a Common Control’ [14] in which Alice can prepare for her
remote Bob a three-qubit Greenberger-Horne-Zeilinger–type (GHZ-type) state [15] of the form

|χ〉= α0 |000〉+α1 |111〉 , (1)

while, at the same time, Bob can prepare for Alice an inequivalent state of the form of a four-qubit
W-type state [16]

|τ〉= β0 |0001〉+β1 |0010〉+β2 |0100〉+β3 |1000〉 , (2)

in such a way that the above-mentioned remote state preparations in both directions (i.e., from
Alice to Bob as well as from Bob to Alice) can only be done upon decision of a common controller
Charlie. In the above equations (1) and (2) |000〉 ≡ |0〉⊗ |0〉⊗ |0〉 , |0001〉 ≡ |0〉⊗ |0〉⊗ |0〉⊗ |1〉
and so on. For simplicity, the coefficients {αi; i = 0,1} and {β j; j = 0,1,2,3} in Eqs. (1) and (2)
are assumed real and satisfy the normalization constraints ∑

1
i=0 α2

i = ∑
3
j=0 β 2

j = 1. Furthermore,
the coefficients α0 and α1 are known only to Alice, while Bob is the only one who knows the
coefficients β0, β1, β2 and β3. The shared nonlocal resource in [14] was a maximally entangled
state that consists of eleven qubits which leads to an expensive cost for the process of distributing
the qubits among Alice, Bob and Charlie, as explained before. Here we have found out that
the same tasks as formulated in [14] can be executed equally well by using a nonlocal resource
which is made only of seven qubits, a much more economical protocol as compared to the original
one. The details of how to use the seven-qubit nonlocal resource for the required remote state
preparations will be presented in the section II. Section III proposes a scheme to generate the
nonlocal resource used in Section II. The final section, Section IV, will be reserved for discussion
and conclusion.

II. SEVEN-QUBIT NONLOCAL RESOURCE: HOW DOES IT WORK?

As the working quantum channel, instead of the eleven-qubit entangled state given in Eq.
(3) of Ref. [14]), here we consider a much simpler one which is made only of seven qubits of the
form

|q〉 =
1

2
√

2
(|0000000〉+ |0010011〉

+ |0110110〉+ |0100101〉
+ |1011010〉+ |1001001〉
+ |1101100〉+ |1111111〉)a1a2a3b1b2b3c , (3)

of which qubits a1,a2,a3 are possessed by Alice, qubits b1,b2,b3 by Bob and qubit c by Charlie.
Let us address on the issue of how to generate the above quantum channel state |q〉 later, but rush
right now to the issue of how it works.
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With the qubits a1,a2,a3 at hand Alice manages to manipulate them locally as she wants.
Likewise, Bob is able to perform any local operations including unitary logic gates and measure-
ments on his qubits b1,b2,b3 and so does Charlie with her qubit c. For the purpose of two-way
remote state preparations under a common control as described in the section Introduction, first
Alice and Bob do their operations and then Charlie does hers. Namely, Alice measures qubit a1
in the basis {|u0〉a1

, |u1〉a1
} with which the computational basis states {|0〉a1

, |1〉a1
} are unitarily

related as (
|0〉a1

|1〉a1

)
=

(
α0 −α1
α1 α0

)(
|u0〉a1

|u1〉a1

)
. (4)

Independently, Bob carries out a joint measurement on qubits b2,b3 in the basis {|v00〉b2b3
, |v01〉b2b3

,
|v10〉b2b3

, |v11〉b2b3
}with which the computational basis states {|00〉b2b3

, |01〉b2b3
, |10〉b2b3

, |11〉b2b3
}

are unitarily related as
|00〉b2b3

|01〉b2b3

|10〉b2b3

|11〉b2b3

=


β0 β1 −β2 β3
β1 −β0 β3 β2
β2 β3 β0 −β1
β3 −β2 −β1 −β0



|v00〉b2b3

|v01〉b2b3

|v10〉b2b3

|v11〉b2b3

 . (5)

Note that Alice and Bob can act independently from each other, i.e., Alice may do her measure-
ment first or they even do their measurements simultaneously. In other words, the order of their
measurements does not matter.

For Alice’s measurement there are two probabilistic outcomes which can be specified by
one cbit l ∈ {0,1} : l = 0 specifies the outcome |u0〉a1

but l = 1 implies the outcome |u1〉a1
.

Concerning Bob’s measurement there are four possible outcomes which can be specified by two
cbits mn ∈ {00,01,10,11} : mn = 00, 01, 10 or 11, if |v00〉b2b3

, |v01〉b2b3
, |v10〉b2b3

or |v11〉b2b3
are

found, respectively. The state |q〉 of the working quantum channel in Eq.(3) can be rewritten in
terms of {|ul〉a1

} and {|vmn〉b2b3
} as

|q〉= 1
2
√

2

1

∑
l,m,n=0

|ul〉a1
|vmn〉b2b3

|wmnl〉a2a3b1c , (6)

with |wmnl〉a2a3b1c to be determined shortly.
In principle, if the measurement outcomes mn and l are disclosed publicly, then Alice could

transform her qubits a2,a3 to the desired state |t〉a2a3
and, at the same time, Bob could transform

his qubit b1 to the desired state |x〉b1
. However, at this moment they could not, because the qubits

a2,a3 and b1 remain entangled with Charlie’s qubit c, indicating a decisive role of the controller
Charlie. If Charlie, by some reasons, does not want the state preparations to be completed, she
simply does nothing. Otherwise, she measures her qubit c in the basis {

∣∣∣0̃〉
c
,
∣∣∣1̃〉

c
}, with∣∣∣0̃〉

c
≡ 1√

2
(|0〉+ |1〉)c (7)

and ∣∣∣1̃〉
c
≡ 1√

2
(|0〉− |1〉)c. (8)
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As a rule, Charlie’s outcome is either
∣∣∣0̃〉

c
, which is assigned with a cbit k = 0, or

∣∣∣1̃〉
c
, which is

assigned with a cbit k = 1. In terms of {
∣∣∣k̃〉

c
} the expression of states |wmnl〉a2a3b1c in Eq. (6) can

be derived explicitly as

|wmnl〉a2a3b1c =
1√
2

1

∑
k=0
|tmnk〉a2a3

|xlk〉b1

∣∣∣k̃〉
c
, (9)

where
|t000〉a2a3

= (β0 |00〉+β1 |01〉+β2 |10〉+β3 |11〉)a2a3 , (10)
|t001〉a2a3

= (β0 |00〉−β1 |01〉−β2 |10〉+β3 |11〉)a2a3 , (11)
|t010〉a2a3

= (β1 |00〉−β0 |01〉+β3 |10〉−β2 |11〉)a2a3 , (12)
|t011〉a2a3

= (β1 |00〉+β0 |01〉−β3 |10〉−β2 |11〉)a2a3 , (13)
|t100〉a2a3

= (−β2 |00〉+β3 |01〉+β0 |10〉−β1 |11〉)a2a3 , (14)
|t101〉a2a3

= (β2 |00〉+β3 |01〉+β0 |10〉+β1 |11〉)a2a3 , (15)
|t110〉a2a3

= (β3 |00〉+β2 |01〉−β1 |10〉−β0 |11〉)a2a3 , (16)
|t111〉a2a3

= (β3 |00〉−β2 |01〉+β1 |10〉−β0 |11〉)a2a3 (17)
and

|x00〉b1
= (α0 |0〉+α1 |1〉)b1 , (18)

|x01〉b1
= (α0 |0〉−α1 |1〉)b1 , (19)

|x10〉b1
= (α1 |0〉−α0 |1〉)b1 , (20)

|x11〉b1
= (α1 |0〉+α0 |1〉)b1 . (21)

Substitution of (9) into (6) yields

|q〉= 1
4

1

∑
l,m,n,k=0

|ul〉a1
|tmnk〉a2a3

|xlk〉b1
|vmn〉b2b3

∣∣∣k̃〉
c
. (22)

As followed from Eq. (22), if outcomes of Alice’s, Bob’s and Charlie’s measurements are
respectively l, mn and k, then the state of Alice’s qubits a2,a3 and that of Bob’s qubit b1 are dis-
entangled from Charlie’s qubit c. More than that, qubits a2,a3 and qubit b1 are also disentangled:
qubits a2,a3 are projected onto |tmnk〉a2a3

, while qubits b1 onto |xlk〉b1
, whose explicit forms are

given in Eqs. (10) - (21). That is, the state of qubits a2,a3 depends on Bob’s measurement out-
comes mn, the state of qubit b1 depends on Alice’s measurement outcome l, and both the states
depend on Charlie’s measurement outcome k. Conditioned on all the obtained measurement out-
comes, which are announced through a public, insecure yet reliable, classical channel, Alice is
able to transform |tmnk〉a2a3

to

|t〉a2a3
= (β0 |00〉+β1 |01〉+β2 |10〉+β3 |11〉)a2a3 (23)

by applying on |tmnk〉a2a3
the unitary operator

Amnk = Xm
a2

Zm⊕k
a2
⊗Xn

a3
Zm⊕n⊕k

a3
, (24)

while, simultaneously, Bob is able to transform |xlk〉b1
to

|x〉b1
= (α0 |0〉+α1 |1〉)b1 (25)
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by applying on |xlk〉b1
the unitary operator

Blk = X l
b1

Zl⊕k
b1

. (26)

In Eqs. (24) and (26)

X =

(
0 1
1 0

)
(27)

denotes the bit-flip operator and

Z =

(
1 0
0 −1

)
(28)

the phase-flip operator, with⊕ being an addition modulus 2 and⊗ the tensor product. For illustra-
tion, the outcomes {l,mn,k}= {0,00,0} lead to A000 = Ia2⊗ Ia3 and B00 = Ib1 , with Ia2 , Ia3 , Ib1 the
identity operators, implying doing nothing. Another set of outcomes {l,mn,k} = {0,00,1} leads
to other operators A001 = Za2⊗Za3 and B01 = Zb1 , implying application of a phase-flip operator on
each of the qubits a2, a3 and b1, etc.

After having the states |t〉a2a3
and |x〉b1

of Eqs. (23) and (25), Alice and Bob need employing
some additional local operators which turn out to be Controlled-NOT gate (CNOT):

CNOTab |p〉a |q〉b = |p〉a |q⊕ p〉b , (29)

i.e., if the cbit of the first qubit a is 1, then the cbit of the second qubit b is flipped, otherwise
nothing happens and Controlled-Controlled-NOT gate (CCNOT):

CCNOTabc |p〉a |q〉b |r〉c = |p〉a |q〉b |r⊕ pq〉c , (30)

i.e., if both the cbits of the two first qubits a, b are 1, then the cbit of the third qubit c is flipped,
otherwise all the cbits remain unchanged. Although CNOT is quite commonplace, CCNOT is
not. In the literature the CCNOT is also referred to as Toffoli gate which was invented in 1980 by
Tommaso Toffoli [17]. In fact, CCNOT is a three-qubit logic gate but it can be realized by at least
five two-qubit logic gates combined with single-qubit logic gates [18]. Returning to our protocol,
Bob prepares two ancillary qubits b′1 and b′′1 in product state |0〉b′1 |0〉b′′1 , then applies two CNOTs,
CNOTb1b′1

and CNOTb1b′′1
, on his three qubits b1, b′1 and b′′1. It is easy to check that

CNOTb1b′′1
CNOTb1b′1

|x〉b1
|0〉b′1 |0〉b′′1 = |χ〉b1b′1b′′1

(31)

which is exactly the three-qubit GHZ-type state (1) that Alice aims to prepare for Bob. Concerning
Alice, she also prepares two ancillary qubits a′2 and a′3 in product state |0〉a′2 |1〉a′3 , then applies on
her four qubits a2, a3, a′2 and a′3 an operator Ua2a3a′2a′3

which is composed from several CNOTs and
one CCNOT as

Ua2a3a′2a′3
=CNOTa′2a2CNOTa′2a3CNOTa′2a′3

CCNOTa2a3a′2
CNOTa3a′3

CNOTa2a′3
. (32)

It is quite nontrivial but not difficult to verify that

Ua2a3a′2a′3
|t〉a2a3

|0〉a′2 |1〉a′3 = |τ〉a′2a2a3a′3
(33)

which is exactly the four-qubit W-type state (2) that Bob aims to prepare for Alice. Derivation of
Eq. (33) is done in the Appendix.



NGUYEN BA AN 265

H

H

H

0

0

0

0

0

0

0

1a

2a

3a

1b

2b

3b

c

Fig. 1. Quantum circuit generating the state |q〉 in Eq. (3) of the seven-qubit nonlocal re-
source. A qubit is represented by a horizontal line. H stands for a single-qubit Hadamard
gate in Eq. (35). A controlled-NOT gate (CNOT) in Eq.(29) is represented by a vertical
straight segment connecting a filled circle • belonging to the control qubit and a NOT
gate ⊕ belonging to the target qubit. Time goes from left to right and all the seven qubits
are prepared in state |0〉 initially.

III. SEVEN-QUBIT NONLOCAL RESOURCE: HOW IS IT GENERATED?

The protocol for the two-way remote preparations of inequivalent quantum states under a
common control presented in the previous section would be meaningless if the seven-qubit entan-
gled state |q〉 defined by Eq. (3) does not really exist. So, in this section we propose a possible
scheme to generate that state. Suppose that David, a technical employee of a company specializing
in the production of various quantum states, is in charge for the generation of the state |q〉 . David
can go along the following steps.

First, he initializes the generation process by taking seven qubits a1, a2, a3, b1, b2, b3 and
c, all in the states |0〉 , i.e., the initial state is

|q0〉= |0〉a1
|0〉a1

|0〉a3
|0〉b1

|0〉b2
|0〉b3

|0〉c . (34)

Second, three Hadamard gates,

H =
1√
2

(
1 1
1 −1

)
, (35)

are applied on qubits a1, a2 and a3, bringing |q0〉 to

|q1〉 = Ha1Ha2Ha3 |q0〉

=
∣∣∣0̃〉

a1

∣∣∣0̃〉
a1

∣∣∣0̃〉
a3
|0〉b1

|0〉b2
|0〉b3

|0〉c , (36)

with
∣∣∣0̃〉 defined by Eq. (7).
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Third, three CNOTs, CNOTa1b1 , CNOTa2b2 and CNOTa3b3 , are applied on |q1〉 bringing it to
|q2〉 of the following form

|q2〉 = CNOTa1b1CNOTa2b2CNOTa3b3 |q1〉
= |EPR〉a1b1

|EPR〉a2b2
|EPR〉a3b3

|0〉c , (37)

with

|EPR〉ab =
1√
2
(|0〉a |0〉b + |1〉a |1〉b) (38)

being one of the four EPR states [1].
Finally, three more CNOTs, CNOTb1c, CNOTb2c and CNOTb3c, are applied on |q2〉 to have

|q3〉=CNOTb1cCNOTb2cCNOTb3c |q2〉 . (39)

By putting |q2〉 of Eq. (37) into the right-hand-side of Eq. (39) and calculating |q3〉 we will see
that |q3〉 is nothing else but the desired seven-qubit entangled state |q〉 . The quantum circuit for
generation of the state |q〉 is shown in Fig.1.

Having generated such a seven-qubit entangled state David distributes qubits a1,a2,a3 to
Alice, qubits b1,b2,b3 to Bob and qubit c to Charlie across noisy environments. The parties should
employ an entanglement distillation process until successfully sharing a pure state |q〉 of the form
given in Eq. (3). Only after that Alice, Bob and Charlie start the two-way remote state preparations
detailed in the previous section.

IV. DISCUSSION AND CONCLUSION

In the quantum world ‘nothing exists until it is measured’ [19]. Alice, Bob and Charlie
never know in advance their measurement outcomes which occur non-deterministically. In this
protocol, an outcome of Alice’s measurement associated with a specific value of cbit l (l = 0 or
1) happens absolutely randomly, i.e, with a probability of 1/2, an outcome of Bob’s measurement
associated with specific values of two cbits mn (mn= 00, 01, 10 or 11) also happens randomly with
an equal probability of 1/4, and so is an outcome of Charlie’s measurement which is associated
with a specific value of cbit k (k = 0 or 1) happening with a probability of 1/2. Therefore, a
particular set of measurement outcomes associated with specific values of cbits l, mn and k occurs
with a probability of 1/16. Despite of this probabilistic feature, our protocol described in Section
II is deterministic, i.e., it always succeeds, because for whatever set of possible values of l, mn and
k the necessary transformation operators (24) and (26) exist in terms of well-defined single-qubit
logic gates.

Using the same nonlocal resource in form of the seven-qubit state (3) Alice and Bob can
exchange inequivalent states other than those given in Eqs. (1) and (2). Namely, instead of
(1) Alice can also prepare for Bob an N-qubit GHZ-type state of the form |Ξ〉 = α0 |00...0〉+
α1 |11...1〉b1B2...BN

. For that purpose Bob takes N−1 ancillas in state |0〉B2
|0〉B3

... |0〉BN
and applies

N−1 CNOTs, CNOTb1B2 ,CNOTb1B3 , ... and CNOTb1BN on |x〉b1
|0〉B2

|0〉B3
... |0〉BN

to readily obtain
|Ξ〉 . From his side, Bob can also prepare for Alice a cluster state [20]. For that purpose Alice takes
an additional state |0〉a′2 |0〉a′3 of two ancillary qubits a′2 and a′3 and applies CNOTa2a′2

CNOTa3a′3
on

|t〉a2a3
|0〉a′2 |0〉a′3 to obtain |T 〉= (β0 |0000〉+β1 |0101〉+β2 |1010〉+β3 |1111〉)a2a3a′2a′3

which is a
type of four-qubit cluster state.
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In conclusion, we reconsider the problem which was recently addressed on in Ref. [14]. The
merit of this reconsideration is that the nonlocal resource employed in [14] is greatly economized
from using eleven qubits to only seven ones. Furthermore, using the seven-qubit entanglement (3)
allows two-way preparations of inequivalent states other than the states (1) and (2) touched upon
in [14]. Actually, the total number of used qubits is the same in [14] and here. However, in [14] all
the eleven qubits contribute to the nonlocal resource in terms of an eleven-qubit entangled state,
while here the nonlocal resource is built only by seven qubits and the remaining four qubits just
serve as auxiliary local resources. As local qubits do not need to be shared among the authorized
parties, the noise due to environment across which distribution of nonlocal qubits takes place, has
no influence on them. This means that the lesser the number of nonlocal qubits the cheaper the
overall cost to perform a given task. Therefore, any possible economization of nonlocal resource
is worth in practice. The idea of exploiting local resource to economize nonlocal resource was
deployed previously in different contexts [21, 22].
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APPENDIX

This Appendix verifies the equality (33). The verification goes as follows.
Ua2a3a′2a′3

|t〉a2a3
|0〉a′2 |1〉a′3

=CNOTa′2a2CNOTa′2a3CNOTa′2a′3
CCNOTa2a3a′2

CNOTa3a′3
CNOTa2a′3

(β0 |00〉+β1 |01〉+β2 |10〉+β3 |11〉)a2a3 |0〉a′2 |1〉a′3
=CNOTa′2a2CNOTa′2a3CNOTa′2a′3

CCNOTa2a3a′2
CNOTa3a′3

CNOTa2a′3
(β0 |0001〉+β1 |0101〉+β2 |1001〉+β3 |1101〉)a2a3a′2a′3
=CNOTa′2a2CNOTa′2a3CNOTa′2a′3

CCNOTa2a3a′2
CNOTa3a′3

(β0 |0001〉+β1 |0101〉+β2 |1000〉+β3 |1100〉)a2a3a′2a′3
=CNOTa′2a2CNOTa′2a3CNOTa′2a′3

CCNOTa2a3a′2
(β0 |0001〉+β1 |0100〉+β2 |1000〉+β3 |1101〉)a2a3a′2a′3
=CNOTa′2a2CNOTa′2a3CNOTa′2a′3

(β0 |0001〉+β1 |0100〉+β2 |1000〉+β3 |1111〉)a2a3a′2a′3
=CNOTa′2a2CNOTa′2a3(β0 |0001〉+β1 |0100〉+β2 |1000〉+β3 |1110〉)a2a3a′2a′3
=CNOTa′2a2(β0 |0001〉+β1 |0100〉+β2 |1000〉+β3 |1010〉)a2a3a′2a′3
= (β0 |0001〉+β1 |0100〉+β2 |1000〉+β3 |0010〉)a2a3a′2a′3

.

Changing the label order a2a3a′2a′3→ a2a′2a3a′3 and then a2a′2a3a′3→ a′2a2a3a′3 yields
Ua2a3a′2a′3

|t〉a2a3
|0〉a′2 |1〉a′3 = (β0 |0001〉+β1 |0010〉+β2 |0100〉+β3 |1000〉)a′2a2a3a′3

which is
|τ〉a′2a2a3a′3

.
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