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Abstract. Methods for two distant parties to exchange their secret messages using single pho-
tons are considered. There existed several such methods but they are either insecure or face with
information leakage problem. Recently, Ye et al. [Quantum Inf. Process. 20 (2021) 209] have
reported a method using single photons in both polarization and spatial degrees of freedom that
is both efficient and resistant from information leakage. However, this method is not so feasible as
it has specific limitations, namely, it requires availability of quantum memory and high classical
communication cost. In this paper a new method to overcome the above-said limitations is pro-
posed. The proposed method is also efficient because it also uses single photons in two degrees of
freedom. However, the encoding operation in the proposed method is modified so that no quantum
memory is demanded at all and the execution of the method is simpler compared to that of Ye et
al.. Moreover, the cost of classical communication in our method is 50% cheaper than that in the
method of Ye et al. Therefore, the proposed method proves to be feasible, simple and economical
that could be realized by means of current technologies.
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I. INTRODUCTION

Quantum entanglement (see, e.g., [1]) is irreplaceable resource for many quantum tasks
such as superdense coding [2], teleportation [3], remote state preparation [4], joint remote state
preparation [5], quantum computation [6], quantum error correction [7], and so on. However, there
are tasks that can be accomplished either with or without entanglement. For example, quantum key
distribution can be done by using entangled photon pairs [8] or unentangled photons [9]. Quantum
secret sharing can also be realized either with the aid of entanglement [10] or simply with the use
of single photons which are unentangled with each other [11].
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Intriguing is a kind of protocols called quantum dialogue [12, 13] or more general bidi-
rectional secure quantum direct communication [14] that aim at simultaneous exchange of secret
information between two distant parties (Alice and Bob) without the need of quantum key distri-
bution in advance.

In this paper we are concerned with methods for secure information exchange without prior
key distribution using single photons, i.e., quantum entanglement is not exploited at all. At the
early stage, each of the photons to be used for the task is prepared impromptu in one of the four
states |h〉 , |v〉 , |+〉 = (|h〉+ |v〉)/

√
2 and |−〉 = (|h〉− |v〉)/

√
2, with |h〉 (|v〉) denoting state of

horizontally (vertically) polarized photon. That is, the photon is encoded in one degree of freedom
(DOF), the polarization DOF, and each photon is worth one qubit. However, like other elementary
particles, a photon possesses several inherent properties so that it can be characterized in multiple
DOFs at the same time. State of such a photon is here referred to as hyperstate. Quite clearly,
use of photon hyperstates boosts the efficiency of quantum tasks because a single photon in this
case stores more than one qubit (precisely, N qubits if N DOFs are simultaneously exploited to
characterize the photon).

In the next section, Sec. II, we first briefly review the existing methods for bidirectional
secure quantum direct communication using single photons in hyperstates associated with both
polarization degree of freedom (P-DOF) and spatial degree of freedom (S-DOF) and then propose
our improved method. Finally, we make conclusion in Sec. III.

II. EXISTING METHODS AND OUR METHOD

Suppose Alice has a secret message in form of a sequence of bits A = {in, jn ∈ {0,1};n =
1,2, ...,N} while Bob has another secret message in form of another sequence of bits B = {kn, ln ∈
{0,1};n = 1,2, ...,N} and they wish to exchange their messages in a secure fashion.

Conventionally, Alice and Bob can do that if they share beforehand two secret keys K(1) =

{x(1)n ,y(1)n ∈ {0,1};n = 1,2, ...,N} and K(2) = {x(2)n ,y(2)n ∈ {0,1};n = 1,2, ...,N} with x(1,2)n ,y(1,2)n
being random bits known only to the two communicators Alice and Bob. The keys can be created
either classically when Alice and Bob meet in person or quantumly when they are at remote
locations by performing quantum key distribution protocols [8,9]. Anyway, the keys K(1,2) should
be shared prior to exchanging the messages. Alice encrypts her message to be A′ = A⊕K(1) =

{p(1)n ,q(1)n ∈ {0,1};n = 1,2, ...,N}, where p(1)n = in⊕ x(1)n , q(1)n = jn⊕ y(1) with ⊕ implying the
XOR operation, then publicly publishes A′ for Bob to decrypt A = A′⊕K(1). After that, Bob uses
the second key to encrypt his message to be B′ = B⊕K(2) = {p(2)n ,q(2)n ∈ {0,1};n = 1,2, ...,N},
where p(2)n = kn ⊕ x(2)n , q(2)n = ln ⊕ y(2), then publicly announces B′ allowing Alice to decrypt
B = B′⊕K(2). A point worth noting is that for the messages’ exchange two different keys are
necessary, i.e., Bob cannot reuse K(1) to encrypt his message. If he did so, from the published
encrypted messages A′ and B′ any eavesdropper Eve can learn the classical correlation A⊕ B
between the communicators’ messages. Such a security loophole is referred to as information
leakage which will be discussed in more detail later.

We now consider a possible urgent situation when Alice and Bob have no chance to share
any secret keys in advance. It turns out that using single photons would allow Alice and Bob
directly (i.e., without a prior key sharing) exchange their messages. Aiming to achieve that purpose
there exists a number of methods some of which will be mentioned in what follows. Let A =
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{i, j ∈ {0,1}} and B = {k, l ∈ {0,1}} for simplicity. The authors of [15] suggested a method,
called Method 1, whereby they exploit hyperstates of travelling single photons. In certain bases
associated with the P-DOF and S-DOF Bob prepares a photon in a hyperstate characterized by his
secret bits k, l and sends the photon to Alice. Alice encodes her secret bits i, j by applying relevant
operators on the hyperstate, changing it to that characterized by k⊕ i, l⊕ j and sends the photon
back to Bob. Because Bob prepared the photon he is able to measure it in the right bases to identify
its characteristics determined by the measurement outcomes denoted by α = k⊕ i, β = l⊕ j. From
α,β Bob infers Alice’s bits as i = k⊕α and j = l⊕β . Thus, Method 1 transfers two bits i, j from
Alice to Bob. It is as good as that by means of superdense coding [2]. Note that differently from
the superdense coding where two entangled photons are needed (one is travelling and the other
always staying with Bob), in Method 1 there is only one photon in double DOFs. Moreover, the
superdense coding requires difficult two-photon joint measurement while Method 1 demands only
simple one-photon measurement. Method 1 is thus more feasible. For Bob to transfer his bits to
Alice, it seems that Bob reveals his measurement outcomes α,β from which Alice could obtain
Bob’s bits as k = i⊕α and l = j⊕β as she knows i, j. However, bad thing is that the bits α,β
themselves reflect classical correlations between Alice’s and Bob’s bits, which Eve can learn for
free by just listening to the public announcement. From the information theory point of view,
this implies occurrence of an information leakage [16, 17]. Hence, Method 1 does not work for
fully secure direct information exchanging. The authors of [18] developed another method, called
Method 2, which consists of three steps. In step 1 Alice prepares an original photon state |r〉origin
with a random r ∈ {0,1} where |0〉 = |h〉 and |1〉 = |v〉 . She then transforms the original state to
|r⊕ i〉origin with i being her secret bit and sends the photon to Bob. In step 2 Bob encodes his bit
k by further transforming |r⊕ i〉origin to |r⊕ i⊕ k〉origin . Next, he takes an ancillary photon in state
|0〉ancilla and performs a controlled-NOT (CNOT) on the two photons with the original photon
as the control and the ancillary photon as the target, resulting in the two-photon separable state
|r⊕ i⊕ k〉origin |r⊕ i⊕ k〉ancilla = CNOT |r⊕ i⊕ k〉origin |0〉ancilla . Bob returns the original photon
to Alice while measures the ancillary photon in the basis {|0〉 , |1〉} to determine r⊕ i⊕ k = p.
In step 3 Alice measures the original photon also in the basis {|0〉 , |1〉} to obtain the same value
p. Since r is known to Alice, she infers Bob’s bit as k = r⊕ i⊕ p. After that, Alice broadcasts
r in order for Bob to decode Alice’s bit as i = r⊕ k⊕ p. Method 2 is bidirectional but faces the
following serious problem. The problem is that all the photon states in Method 2 are in a known
basis {|0〉 , |1〉}. So, in step 1, when the original photon travels from Alice to Bob, Eve measures it
in the basis {|0〉 , |1〉} to learn r⊕ i = q without any traces left behind. Later, in stage 2, when Bob
sends Alice the original photon, Eve again measures it in the right basis to also learn p = r⊕ i⊕k.
Finally, in stage 3, when Alice reveals r Eve uses it together with q and p to deduce both Alice’s bit
i = r⊕q and Bob’s bit k = q⊕ p. Thus, despite the randomness of r, Method 2 is totally insecure
as opposed to the claim of the authors. The insecurity of Method 2 was attempted to overcome
by Method 3 [19] employing photon hyperstates in both P-DOF and S-DOF. Alice and Bob apply
different local encoding operation chosen separately from the Pauli operators in Eqs. (7) - (8)
and Hadamard operators in Eqs. (9) - (10). As one photon in a hyperstate carries two bits of
information, the capacity of Method 3 is high. The authors said that their method is information-
leakage free but that is not so because the bits they announce are in fact the XOR values of their
secret bits. Later, a possible method, Method 4, was proposed in Refs. [20, 21] to countermeasure
against information leakage by modifying the way of encoding. Namely, a secret bit of Alice
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is encoded by one of two random options, say, options A1 and A2, with the aid of Hadamard
operators. Bob also has to options B1 or B2 with the aid of Pauli operators to encode his bit. By
doing so, depending on her encoding choice (A1 or A2), Alice can decode Bob’s bit independent
of his encoding option. Likewise, depending on his encoding choice (B1 or B2), Bob can decode
Alice’s bit independent of her encoding option. Eve is unable to obtain neither Alice’s bit nor
Bob’s bit nor their classical correlation because she is ignorant of the applied encoding options
of Alice and Bob. Method 4 thus escapes the risk of information leakage. The limitation is its
inefficacy: only two bits can be exchanged (one from Alice to Bob and one the other way around),
not talking about the quite confused encoding options. Recently, a new method, Method 5, has
appeared [22] which gets rid of information leakage but still suffers from a technical drawback. We
shall present Method 5 in detail to see how it works and then find way to cope with its drawback.
For convenience, we shall introduce our mathematical notations.

The hyperstate of a photon in both P-DOF and S-DOF has the most general form

|Ψ〉PS = x |h〉P |a0〉S + y |h〉P |a1〉S + z |v〉P |a0〉S + t |v〉P |a1〉S , (1)

with |h〉P (|v〉P) state in P-DOF of a photon which is horizontally (vertically) polarized, |a0〉S
(|a1〉S) state in S-DOF of a photon which propagates along spatial path a0 (a1) and x, y, z, t com-
plex coefficients satisfying the normalization constraint |x|2+ |y|2+ |z|2+ |t|2 = 1. Of our concern
are the following sixteen specific hyperstates which we mathematically formulate as

|ψbP,m,bS,n〉PS = |bP,m〉P |bS,n〉S , (2)

with bP,bS,m,n ∈ {0,1}. In Eq. (2) bP identifies the basis in P-DOF: bP = 0 (1) implies the basis
{|h〉P , |v〉P} ({|+〉P = (|h〉P + |v〉P)/

√
2, |−〉P = (|h〉P−|v〉P)/

√
2}) and m = 0 (1) indicates |h〉P

or |+〉P (|v〉P or |−〉P). That is,
|0,0〉P = |h〉P , |0,1〉P = |v〉P , (3)

|1,0〉P = |+〉P , |1,1〉P = |−〉P . (4)

As for S-DOF, bS = 0 (1) implies the basis {|a0〉S , |a1〉S} ({|s〉S = (|a0〉S + |a1〉S)/
√

2, |a〉S =

(|a0〉S−|a1〉S)/
√

2) and n = 0 (1) indicates |a0〉S or |s〉S (|a1〉S or |a〉S). That is,

|0,0〉S = |a0〉S , |0,1〉S = |a1〉S , (5)

|1,0〉S = |s〉S , |1,1〉S = |a〉S . (6)

Clearly, the hyperstates (2) are particular cases of (1), i.e., |ψo,o,o,o〉PS = |Ψ〉PS|x=1 , |ψo,o,o,1〉PS =
|Ψ〉PS|y=1 , |ψo,o,1,o〉PS = |Ψ〉PS|x=y=1/

√
2 , |ψo,o,1,1〉PS = |Ψ〉PS|x=−y=1/

√
2 and so on. Any of the

sixteen hyperstates (2) is easy to produce from the hyperstate |0,0〉P |0,0〉S by means of linear-
optics toolkits such as beam-splitter, polarization beam-splitter, half-wave/quarter-wave plates,
etc.. Secret bits can be hidden in photon hyperstates by application of unitary operators

YP = |h〉P 〈v|− |v〉P 〈h| , (7)

YS = |a0〉S 〈a1|− |a1〉S 〈a0| , (8)

HP = |+〉P 〈h|+ |−〉P 〈v| , (9)

HS = |s〉S 〈a0|+ |a〉S 〈a1| . (10)
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It is straightforward to verify that, for any x,y ∈ {0,1},

Y x
P ⊗Y y

S |bP,m〉P |bS,n〉S =(−1)x(bP+m+x)+y(bS+n+y) |bP,m⊕ x〉P |bS,n⊕ y〉S , (11)

Hx
P⊗Hy

S |bP,m〉P |bS,n〉S = |bP⊕ x,m〉P |bS⊕ y,n〉S . (12)

From Eqs. (11) and (12), the operators YP,YS change the basis state but not the type of basis,
whereas the operators HP,HS change the basis type but keep the basis state unchanged. In what fol-
lows the global phase factor (−1)x(bP+m+x)+y(bS+n+y) in Eq.(11) will be omitted because it causes
no physical effects in the tasks under consideration.

In Method 5 [22] at the beginning Bob chooses random bP,m,bS,n to prepare two photons
in the hyperstate |φ〉(1)PS |φ〉

(2)
PS with |φ〉(1)PS = |φ〉(2)PS = |bP,m〉P |bS,n〉S and sends both photons to

Alice. Alice hides her secret bits i, j in |φ〉(1)PS by applying Y i
PY j

S on it, i.e.,

|φ〉(1)PS →
∣∣φi j

〉(1)
PS = |bP,m⊕ i〉P |bS,n⊕ j〉S , (13)

and returns
∣∣φi j

〉(1)
PS to Bob, while stores |φ〉(2)PS intact in a quantum memory. Upon receiving

∣∣φi j
〉(1)

PS

Bob applies Y k
PY l

S on it to encode his secret bits k, l. The hyperstate
∣∣φi j

〉(1)
PS becomes∣∣φi j,kl

〉(1)
PS = |bP,m⊕ i⊕ k〉P |bS,n⊕ j⊕ l〉S . (14)

Bob then measures
∣∣φi j,kl

〉(1)
PS in the bases in which he prepared the photons. Because the measure-

ment bases are right (i.e., bP for P-DOF and bS for S-DOF), measurement outcomes should be

p = m⊕ i⊕ k, (15)
q = n⊕ j⊕ l, (16)

i.e., the measured photon should be found in the hyperstate |bP, p〉P |bS,q〉S . Since Bob knows
m,n,k, l he can immediately decode Alice’s bits from his measurement outcomes p,q as

i = m⊕ p⊕ k, (17)
j = n⊕q⊕ l. (18)

As for the photon kept in Alice’s quantum memory, it is still in the hyperstate |φ〉(2)PS = |bP,m〉P |bS,n〉S
unknown to her, so it does not help Alice in any decoding. To enable Alice’s decoding, Bob needs
to announce the bases bP,bS together with the outcomes p,q. Only after hearing bP,bS from Bob’s
announcement Alice starts measuring |φ〉(2)PS in the right bases to determine m,n. Then, combining
m,n with p,q she is able to decode Bob’s secret bits as

k = m⊕ p⊕ i, (19)
l = n⊕q⊕ j. (20)

As the announced bits p and q (see Eqs. (15) and (16)) contain random m,n unknown to the
outsider, Method 5 circumvents the information leakage. However, a quantum memory is required
to store photon in hyperstate |φ〉(2)PS for a time duration long enough: Alice can measure |φ〉(2)PS only
after Bob finishes his encoding process, measurement and announcement. The requirement of
such a quantum memory makes Method 5 infeasible technically.

To avoid use of quantum memory we shall construct an improved method as follows. At the
initial time t = 0 Bob chooses a pair of random bits bP,bS serving as the bases for preparing two
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identical photons, each in the same hyperstate |bP,0〉P |bS,0〉S . The initial two-photon hyperstate
can be written in the form

|Ψ0〉PS = |φ0〉(1)PS |ψ0〉(2)PS (21)
where

|φ0〉(1)PS = |ψ0〉(2)PS = |bP,0〉P |bS,0〉S , (22)
with the super-indices (1) and (2) labeling the photon 1 and photon 2, respectively. Then, at time
t = 1, he chooses another pair of random bits α,β and applies Y α

P ⊗Y k
S on photon 1 and Y β

P ⊗Y l
S

on photon 2 to transform |Ψ0〉PS to

|Ψ1〉PS = |φ1〉(1)PS |ψ1〉(2)PS , (23)

where
|φ1〉(1)PS = |bP,α〉P |bS,k〉S (24)

and
|ψ1〉(2)PS = |bP,β 〉P |bS, l〉S , (25)

with k, l Bob’s two secret bits. Bob continues by sending the two photons of |Ψ1〉PS to Alice.
At a later time t = 2, when Alice receives the hyperstate |Ψ1〉PS , she encodes her secret bits

i, j by applying Y i
P⊗Y µ

S on photon 1 and Y j
P ⊗Y ν

S on photon 2, with µ, ν new randomly chosen
bits. These actions transform the hyperstate |Ψ1〉PS to

|Ψ2〉PS = |φ2〉(1)PS |ψ2〉(2)PS , (26)

where
|φ2〉(1)PS = |bP,α⊕ i〉P |bS,k⊕µ〉S (27)

and
|ψ2〉(2)PS = |bP,β ⊕ j〉P |bS, l +ν〉S , (28)

which is sent back to Bob. Next, at time t = 3, right after arrival of |Ψ2〉PS , Bob measures each
of the two photons in the bases bP, bS. As bP, bS are the bases in which Bob had prepared the
photons, the hyperstate he will find by the measurement must be of the form

|Ψ3〉PS = |φ3〉(1)PS |ψ3〉(2)PS , (29)

where
|φ3〉(1)PS = |bP,d〉P |bS, f 〉S , (30)

with
d = α⊕ i, f = k⊕µ, (31)

and
|ψ3〉(2)PS = |bP,g〉P |bS,h〉S , (32)

with
g = β ⊕ j,h = l +ν . (33)

The bits d, f , g and h are regarded as Bob’s measurement outcomes. After the measurement Bob
keeps d and g with him for later use but publicly announces f and h by means of an open reliable
classical communication channel.

Finally, at time t = 4, with the known α, β , d and g Bob can straightforwardly decode
Alice’s secret bits as

i = α⊕d, j = β ⊕g, (34)
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while Alice can also straightforwardly decode Bob’s secret bits as

k = f ⊕µ, l = h+ν , (35)

because she knows f and h from Bob’s announcement and µ, ν are previously chosen by her.
In our method only two bits f and h are to be announced. Notably, f = k⊕µ and h = l+ν

are themselves random and their XOR value f ⊕h = k⊕µ⊕ l⊕ν is random too, thanks to the fact
that µ and ν have been on purpose chosen randomly by Alice at time t = 2. Therefore, any third
party listening to the broadcasted bits f and h does not gain any meaningful information. That
means that our method is information leakage free as was Method 5. Interestingly, our method
is superior to Method 5. A detailed comparison with Method 5 shows that method 5 and our
method are equally efficient: both methods allow to exchange four secret bits (two from Alice
to Bob and two from Bob to Alice). Nevertheless, from a practical point of view, our method is
more feasible, simpler and more economical than Method 5 that is justified by the following three
specific features. Firstly, as described above, Method 5 requires a long-effective quantum memory
device for Alice to keep one photon (photon 2) until she hears Bob’s announcement of the bases
bP,bS of the photon preparation. Only after having known bP,bS Alice will be in the position to
make her measurement on photon 2 to decode Bob’s secret bits. In contrast, our method does
not require such quantum memory, so our method is more feasible. Secondly, in Method 5 both
Alice and Bob should do their measurements, while in our method only Bob must measure the
photons at time t = 3 immediately after he obtains them, so our method is simpler in execution.
Thirdly, in Method 5 four bits of classical communication, namely, bP,bS (which are the two bases
in which the photons were prepared) and p,q (which are the two outcomes of Bob’s measurement
on photon 1), must be publicly revealed, while in our method the number of to-be-disclosed bits
is only two, namely, f and h (which are two out of the four measurement outcomes of Bob), so in
our method the classical communication cost is just 50% of that consumed in Method 5, implying
that our method is more economical. Fig. 1 visually displays the processing steps of our method.

To securely exchange the whole long messages A = {in, jn ∈ {0,1};n = 1,2, ...,N} and
B = {kn, ln ∈ {0,1};n = 1,2, ...,N} Alice and Bob must obey certain procedures to detect possible
eavesdropping attacks. Since the photons travel forth and back in open space between Alice and
Bob and eavesdroppers always ambush on the quantum channels as spies, detecting various kinds
of eavesdropping attacks is compulsory to ensure the security. The most well-known and effective
detection strategy makes use of so-called decoy photons. The decoy-photon-based technique is
familiar in the literature so we just outline it briefly here. Instead of preparing two photons in the
hyperstate |Ψ1〉PS of Eq. (23), Bob prepares a batch B1 of ordered photon pairs as

B1 = {|Ψ1,n〉PS ;n = 1,2, ...,N}, (36)

where
|Ψ1,n〉PS = |φ1,n〉(1)PS |ψ1,n〉(2)PS , (37)

with
|φ1,n〉(1)PS = |bP,αn〉P |bS,kn〉S (38)

and
|ψ1,n〉(2)PS = |bP,βn〉P |bS, ln〉S . (39)

In the above formulae {αn,βn} are random bits and {kn, ln} Bob’s secret bits. It is crucial to
emphasize that though {αn,βn} are random they are chosen by Bob so nobody except Bob knows
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Fig. 1. Schematic illustration of chronological steps in our method. The secret bits to be exchanged
are i, j possessed by Alice and k, l possessed by Bob. Bob kicks off with two photons in the same
hyperstate |bP,0〉P |bS,0〉S (see Eq. (2)). The rectangular with QEB (QEA) represents Bob’s (Alice’s)
quantum operation in which P-DOF Pauli operators in Eq. (7) and S-DOF ones in Eq. (8) are used
to encode his (her) secret bits k, l (i, j) as well as to introduce necessary random bits α, β (µ, ν).
The oval with bP,bS represents the photon measurement in the bases bP,bS. Photon is displayed by
a solid line, while dashed lines are classical communication channels used for announcement of the
measurement outcomes h, g, f and h. The diamond is the classical decoding calculation based on
the measurement outcomes. Time flies from left to right. See text for more details.

them. After successful preparation of the photon batch B1, Bob takes a large enough number
of decoy photon pairs and inserts them into batch B1 with the positions of the decoy photons
recorded. Each photon of a decoy photon pair is randomly put in one of the four states |h〉 , |v〉 ,
|+〉 or |−〉 . Then, by the block transmission technique [23], Bob transmits Alice the photon block
consisting of both the photons in batch B1 and the inserted decoy photons. After Alice receives
the photon block, Bob guides Alice to figure out the decoy photons and they together carry out
the security check as described explicitly in [9]. If the security level is acceptable (i.e., it is higher
than a prefixed threshold), Alice remove all the decoy photons and encodes her secret bits in, jn
on the photons in batch B1 to form a new batch B2,

B2 = {|Ψ2,n〉PS ;n = 1,2, ...,N}, (40)

where
|Ψ2,n〉PS = |φ2,n〉(1)PS |ψ2,n〉(2)PS , (41)

where
|φ2,n〉(1)PS = |bP,αn⊕ in〉P |bS,kn⊕µn〉S (42)

and
|ψ2,n〉(2)PS = |bP,βn⊕ jn〉P |bS, ln +νn〉S , (43)

with randomly chosen bits µn and νn known solely by Alice. Alice also makes use of the same
decoy photon technique and transmits to Bob the new block consisting of both the photons in batch
B2 and the new decoy photons which she prepared and inserted into batch B2. After Bob confirms
receipt of the photon block, Alice tells Bob the positions of the decoy photons and they together
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check the security level. If the error rate is lower than a prefixed threshold, Bob disregards all the
decoy photons and measures each photon pair in batch B2 in the bases bP,bS. What he should find
are a sequence of hyperstates

{|Ψ3,n〉PS = |φ3,n〉(1)PS |ψ3,n〉(2)PS ), (44)
where

|φ3,n〉(1)PS = |bP,dn〉P |bS, fn〉S , (45)
with

dn = αn⊕ in, fn = kn⊕µn (46)
and

|ψ3,n〉(2)PS = |bP,gn〉P |bS,hn〉S , (47)
with

gn = βn⊕ jn,hn = ln +νn. (48)
Next, Bob lets Alice know the measurement outcomes fn and hn so that Alice’s decoding reads

kn = fn⊕µn, ln = hn +νn. (49)

Bob himself decodes Alice’s bits as

in = αn⊕dn, jn = βn⊕gn. (50)

The above decoding rules are valid for every n, meaning that Alice’s secret message A= {in, jn;n=
1,2, ...,N} and Bob’s secret message B= {kn, ln;n= 1,2, ...,N} are absolutely securely exchanged.

III. CONCLUSION

We have briefly reviewed existing quantum methods for exchanging secret messages be-
tween two distant parties employing single photons as information shuttles. Some methods are
shown insecure, others appear not fully secure in the sense that, though the exchanged secret bits
themselves cannot be cracked, their classical correlations leak out to an outsider who needs no
efforts other than listening to the public announcement of the authorized communicator. From an
information theory point of view, such a security loophole has the name ‘information leakage’.
Recently, in 2021, there is an efficient method [22] which is resistant of information leakage by
utilizing single-photon hyperstates (i.e., states of single photons in both polarization and spatial
degrees of freedom). Yet, this method suffers from a technical difficulty that it necessitates long-
working quantum memory. Although single photons are quite easy to prepare and operate even in
multiple degrees of freedom, quantum memory devices working for a long enough time are still
challenging at present. So the method in [22] is regarded as of little feasibility in practice. Our
method in this paper also uses single-photon hyperstates but the way the secret bits are encoded
is modified by judiciously introducing relevant random bits by the two communicators so that the
photons can be measured right away as they arrive without the need of keeping them intact for
some time till their actual measurement. That is, no quantum memory is required for our method.
Furthermore, in our method only Bob (not both Bob and Alice) needs to carry out measurement
and the classical communication cost in our method is just half of that in the method of [22]. With
the just-mentioned features our improved method is more feasible, simpler and cheaper than that
in [22] and is thus within the reach of available modern quantum technologies.
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