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ABSTRACT 

Advances in next generation sequencing allow us to do DNA sequencing rapidly at a relatively 

low cost. Multiple bioinformatics methods have been developed to identify genomic variants 

from whole genome or whole exome sequencing data. The development of better variant calling 

methodologies is limited by the difficulty of assessing the accuracy and completeness of a new 

method. Normally, computational methods can be benchmarked using simulated data which 

allows us to generate as much data as desired and under controlled scenarios. In this study, we 

compared three variant calling pipelines: Samtools/VarScan, Samtools/Bcftools, and 

Picard/GATK using two simulated datasets. The result showed a significant difference between 

the three pipelines in two cases. In Chromosome 6 dataset, GATK and Bcftools pipelines 

detected more than 90% of variants. Meanwhile, only 82.19% of mutations were detected by 

VarScan. In NA12878 datasets, the result showed GATK pipeline was more sensitive than 

Bcftools and Varscan pipeline. All pipelines showed a high Positive Predictive Value. Moreover, 

by a measure of run time, VarScan was the highest pipeline but GATK has an option for 

multithreading which is a way to make a program run faster. Therefore, GATK is more effective 

than Bcftools and Varscan to variant calling with a lower coverage dataset. 
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INTRODUCTION 

Next-generation sequencing (NGS) known 
as high throughput sequencing, allow for 
sequencing of nucleic acid including DNA 
and RNA much more quickly and cheaper 
than previously sequencing method. 
Therefore, whole genome sequencing (WGS) 
and whole exome sequencing (WES) methods 
are widely applied in clinical for detecting 
patient’s genomic variants of the genetic 
disease. WES is becoming a standard, more 
economic approach to do genome sequencing. 
However, the massive data was generated by 
NGS result in multiple challenges, including 
storage and bioinformatics analysis. 

Currently, numerous genetic variant 
calling methods have been developed to 
identify genomic variants from whole genome 
or exome sequencing data. Most methods are 
based on the alignment of raw sequence reads 
against a reference genome (Li, 2014, 2012). 
This approach has some disadvantages 
including incompleteness of genomes 
assembly (Meyer et al., 2013), sequencing 
errors, and interference of single nucleotide 
polymorphisms on reads mapping (Iqbal et al., 
2012), structural variations in the individual 
genomes (Sudmant et al., 2015). Therefore, 
the alignment-based approach has high levels 
of false positives of variant calling. More 
efficient computational methods and 
softwares are constantly being developed in 
order to provide more accurate and faster 
processing. When new computational 
methods or software tools are developed, it is 
essential that these software tools are more 
superior than existing tools with similar 
functionality. Normally, bioinformatics 
methods can be benchmarked using simulated 
data which allows us to generate as much data 
as desired and under controlled variants. Thus, 
computer simulation of genomic data has 
become increasingly popular for assessing and 
validating biological models. 

Among many paired-end short read 
aligners, Bowtie2 (Langmead & Salzberg, 
2012), BWA-MEM (Li, 2013) and SOAP2 (Li 
et al., 2009) are widely used because of fast, 
memory-efficient, and particularly useful for 

aligning repetitive reads. The most dominant 
genotype calling pipelines are the GATK Best 
Practices (DePristo et al., 2011; Van der 
Auwera et al., 2013). These workflows 
recommend read mapping by Burrows-
Wheeler Aligner (BWA), post-alignment 
processing using Picard, and then GATK 
variant calling. In addition, VarScan (Koboldt 
et al., 2009) and Bcftools (Narasimhan et al., 
2016) - two open source tools for detecting 
SNPs, insertions and deletions variants are 
widely used. In this study, we performed 
variant detection with two datasets including a 
simulated human GRCh38 chromosome 6 and 
a WES data set NA12878 for comparison of 
three variant calling pipelines using Samtools 
- Varscan, Samtools - Bcftools and Picard - 
GATK. 

MATERIALS AND METHODS 

Datasets 

To assess variant calling pipeline, we 
performed with two datasets: a simulated 
human GRCh38 chromosome 6 and a WES 
data set NA12878. In the simulated dataset, 
the sequence of Chromosome 6 
(NC_000006.12) was used as reference data 
to simulated Illumina paired-end reads using 
Dwgsim simulator (available at 
https://github.com/nh13/DWGSIM) with a 
length of reads were 150 bp. The sequence of 
Chromosome 6 (NC_000006.12) was used as 
reference data for variant calling from this 
dataset. 

The WES dataset NA12878 was 
sequenced using the HiSeq Illumina 2000 
platform and annotated from Genome in a 
Bottle consortium (GiaB). The sequence of 
human GRCh38 was used as reference data 
for variant calling from this dataset. 

Variant calling pipeline 

The reads were mapped to reference data 
by order using Burrows-Wheeler Aligner (Li 
& Durbin, 2009). The alignment sam file then 
was used for all three variant calling pipelines. 

In the first pipeline, we used Picard 
(available at http://broadinstitute.github.io/ 
picard/) to mark and removed repeated reads, 
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to sort and create indexes on alignment bam 
files. Variants were called by applying 
HaplotypeCaller in the GATK package 
version 4.1. To reduce erroneous calls, 
alignments were subjected to duplicate 
marking and local realignment by following 
the GATK Best Practices (DePristo et al., 
2011; Van der Auwera et al., 2013). 

In other pipelines, post-alignment 
processing was performed using Samtool (Li 
et al., 2009) to sort and create indexes on 
alignment bam files. Then variants were 
detected using Varscan version 2.4.3 (Koboldt 
et al., 2009) and Bcftools (Narasimhan et al., 
2016). Schematic of the data analysis 
workflow was shown in Figure 1. 

 

 

Figure 1. Schematic of the data analysis workflow 
 
Statistical Calculations 

Positive Predictive Value (PPV) and 
sensitivity of each tool were calculated by 
applying formulas below: 

 
TP

PPV
TP FP




 

 
TP

Sensitivity
TP FN




 

True Positive (TP) is a mutation that was 
detected by the pipeline being tested and is 
one that exists in the inserted variants list; 
False Positive (FP) is a mutation that was 
detected by the pipeline being tested but is 
one that does not exist in the inserted variants 
list; False Negative (FN) is a mutation that 
was not detected by the pipeline being tested 
but is one that does exist in the inserted 
variants list. 

Measure of run time 

Three pipelines were performed by 1 core 

on a high-performance computer system (196 

GB RAM, Intel Xeon CPU with 2.60 GHz). 

The run time of each pipeline was measured 

from post-alignment processing step to end 

of pipeline. 

RESULTS AND DISCUSSION 

Data simulation features 

In a real NGS experiment, the type, 
number, and length of reads are determined by 
the specific sequencing machine and the 
library preparation. Computational simulators 
can generate a specific amount of reads with 
different lengths according to the sequencing 
technology assumed. The number of reads can 
be specified or estimated according to the 
desired coverage. Coverage is a key factor in 
variant calling. Tian et al., showed that 40X 
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coverage seems sufficient for most of the 
callers across the full range of divergence 
(Tian et al., 2016). In another report, Song et 
al. considered that coverage of 15X was a 
suitable choice for obtaining a sufficient 
number of accurately genotyped SNPs (Song 
et al., 2016). In this study, we assumed the 
type of reads were paired-end, coverage was 
30X, and length of reads was 150 bp. 
Computational simulation of two datasets 
yields 2.5 Gb sequence paired-end reads of 
human chromosome 6. 

Mapping paired-end reads to the reference 
sequence 

The paired-end reads were mapped against 
the reference sequences using the BWA 
aligner. The default parameter was used for 
mismatches in the “bwa aln” command, which 
means there were no more than 2 mismatches 
in the first 32 bp of reading. The mapping rate 
was defined as the ratio of mapped reads over 
the total number of simulated reads. In the 

simulated datasets, almost 100% of the read 
was mapped to the reference sequence and 
about 99.80% of the sequence reads were 
aligned to the reference in the NA12878 
dataset. 

Variant calling from human chromosome 6 
simulated data 

To compare three pipelines, we performed 
variant calling by applying all pipelines from 
the same alignment sam file. The result 
showed that the pipeline using Picard/GATK 
Haplotypecaller and Bcftools were more 
sensitive than Samtool - Varscan pipeline. In 
total 6,474,862 variants were generated by 
Dwgsim, 6,419,178 variants (99.14%) were 
detected by GATK Haplotypecaller, 
5,839,168 variants (90.18%) were detected by 
Bcftools. Only 5,321,774 variants (82.19%) 
were detected using the Samtool-Varscan 
pipeline. Variant calling performance, 
Positive Predictive Value, and sensitivity of 
three pipelines were showed in Table 1.

 
Table 1. Variant calling performance of three pipelines in Chromosome 6 dataset 

Variant Caller True Positive False Positive False Negative PPV (%) Sensitivity (%) 

GATK 6,419,178 0 110,954 100 99.14 

Bcftools 5,839,168 20 635,694 99.99 90.18 

VarScan 5,321,774 0 1,153,088 100 82.19 

 
Variant calling from NA12878 dataset 

GATK Haplotypecaller and Bcftools 
pipelines were more sensitive than Samtool - 
Varscan pipeline. In total 3,775,119 variants 
were reported GiaB in NA12878 dataset, 
3,744,918 variants (99.20%) were detected by 
GATK Haplotypecaller, 3,507,085 variants 

(92.89%) were detected by Bcftools. Only 
3,390,056 variants (89.80%) were detected 
using Samtool - Varscan pipeline and 14 
mutations were reported as failed by the 
strand filter. Variant calling performance, 
Positive Predictive Value, and sensitivity of 
three pipelines were showed in Table 2. 

 
Table 2. Variant calling performance of three pipelines in NA12878 dataset 

Variant Caller True Positive False Positive False Negative PPV (%) Sensitivity (%) 

GATK 3,744,918 0 30,201 100 99.20 

Bcftools 3,507,085 18 268,034 99.99 92.89 

VarScan 3,390,056 11 385,063 99.99 89.80 

 
Measure of run time 

The run time of each pipeline was 
measured from post - alignment processing 
step to end of pipeline (Table 3). 

VarScan was the fastest tool in the two 

cases. There was no significant difference 

between Bcftools and GATK in the run time 

but GATK has an option for multithreading 
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which is a way to make a program finish 

faster. All three pipelines contain pre-

processing steps which maybe increase the 

run time. However, as these steps are either 

necessary or highly recommended by the 

authors of the tools, they are regarded as 

being an integral part of the variant calling 

process. 

 
Table 3. Run time of the variant calling process for the three variant calling pipelines 

Pipeline Runtime Chromosome 6 dataset Runtime NA12878 Option for multithreading 

GATK 3,782 seconds 5,857 seconds Yes 

VarScan 3,015 seconds 5,123 seconds No 

Bcftools 3,856 seconds 5,967 seconds No 

 
The development of NGS technologies 

has remarkably decreased the cost of genome 
sequencing. This affordability of NGS allows 
the clinical application of WES or WGS to 
identify variants of personal genomes for 
practicing genomic medicine. This 
affordability of NGS allows the clinical 
application of WES or WGS to identify 
variants of personal genomes for practicing 
genomic medicine. Accurate variant discovery 
is crucial for pinpointing the causal mutations 
underlying human diseases. Current 
computational methods are generally effective 
in detecting ordinary variants but less so for 
variants located in difficult regions 
(Weisenfeld et al., 2014). Furthermore, each 
kind of data in accordance with a different 
method. Although the alignment-based 
approach has many limitations, genetic variant 
calling is based on the alignment of raw 
sequence reads against a reference genome 
has been widely applied on large and complex 
genomes (Wu et al., 2017). In this study, 
GATK and Bcftools pipelines were more 
sensitive than the Varscan pipeline. This 
result may be since Varscan requested a 
higher coverage than GATK. Koboldt et al. 
(2013) found that VarScan2 performed best 
overall with sequencing depths of 100x, 250x, 
500x and 1000x required to accurately 
identify variants present at 10%, 5%, 2.5% 
and 1% respectively. 

CONCLUSION 

In summary, to understand the overall 
performance of variant callers for next 
generation sequencing data, we compared 
Samtools - Varscan, Samtools - Bcftools 

Picard - GATK variant calling pipelines using 
simulated paired-end read of chromosome 6 
and NA12878 dataset from GB. GATK 
pipeline showed the highest sensitivity and 
positive predictive value. Although it wasn’t 
the fastest pipeline GATK has an option for 
multithreading which will make it run faster. 
Therefore, GATK is more effective than 
Bcftools and Varscan to variant calling with a 
lower coverage dataset. 
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