Cloning and expression of \(\textit{ pigI}\) gene in \(\textit{Escherichia coli}\) BL21 (DE3)


Authors

  • Do Minh Trung Institute of Biomedicine and Pharmacy, Vietnam Military Medical University (VMMU)
  • Do Hai Quynh Institute of Genome Research, Vietnam Academy of Science and Technology
  • Nguyen Thuy Duong Institute of Genome Research, Vietnam Academy of Science and TechnologyGraduate University of Science and Technology, Vietnam Academy of Science and Technology https://orcid.org/0000-0001-8691-9138
DOI: https://doi.org/10.15625/2615-9023/15836

Keywords:

MAP, MBC, pigI, prodigiosin, Vietnam

Abstract

Prodigiosin (Pg), a secondary metabolite with anticancer and antimicrobial activities, can be produced in Serratia marcescens bacteria through the condensation reaction of 4-methoxy-2, 2’-bipyrrole-5-carboxyaldehyde (MBC) and 2-methyl-3-amylpyrrole (MAP). Among these, the MBC synthetic pathway is started by the conversion of L-proline to L-proline-AMP before this complex is covalently attached to PigG. This reaction is catalyzed by an L-prolyl-AMP ligase named PigI. Therefore, PigI protein plays an important role in the prodigiosin biosynthetic pathway. However, studies related to PigI protein have not been carried out in Vietnam yet. In this work, the pigI gene was cloned and expressed in Escherichia coli DH10B and BL21 (DE3), respectively. Sequence alignment results revealed that the obtained pigI gene is 99.7% identical to the four strains, CP027798, CP027796, CP021984 and CP003959. This recombinant vector pJET1.2/pigI was used to reamplify pigI, and the acquired amplicon was inserted into pET22b vector at the site of HindIII and XhoI. The clone E. coli BL21 (DE3) containing the recombinant vector pET22b/pigI was expressed in an auto-induced medium. The presence of PigI protein in the lysate was identified due to a 53 kDa band through Western Blot analysis using an anti-his-tag antibody. The results of our study provide a potential method for producing prodigiosin from recombinant protein in Vietnam.

References

Diaz-Ruiz C., Montaner B., Pérez-Tomás R., 2001. Prodigiosin induces cell death and morphological changes indicative of apoptosis in gastric cancer cell line HGT-1. Histol. Histopathol., 16(2): 415−421. https://doi.org/10.14670/hh-16.415

Domröse A., Klein A. S., Hage-Hülsmann J., Thies S., Svensson V., Classen T., Pietruszka J., Jaeger K.-E., Drepper T., Loeschcke A., 2015. Efficient recombinant production of prodigiosin in Pseudomonas putida. Front. Microbiol., 6: 972−972. https://doi.org/10.3389/fmicb. 2015.00972

Francisco R., Pérez-Tomás R., Gimènez-Bonafé P., Soto-Cerrato V., Giménez-Xavier P., Ambrosio S., 2007. Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. Eur. J. Pharmacol., 572(2): 111−119. https://doi.org/10.1016/j.ejphar.2007.06.054

Han N., Ran T., Lou X., Gao Y., He J., Tang L., Xu D., Wang W., 2014. Expression, crystallization and preliminary crystallographic data analysis of PigI, a putative L-prolyl-AMP ligase from the prodigiosin synthetic pathway in Serratia. Acta. Crystallogr. F, 70(Pt 5): 624−627. https://doi.org/10.1107/S2053230X14005780

Harris A., Williamson N., Slater H., Cox A., Abbasi S., Foulds I., Simonsen H. T., Leeper F., Salmond G., 2004. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology, 150(Pt 11): 3547−60. https://doi.org/10.1099/mic. 0.27222-0

Hong B., Prabhu V. V., Zhang S., van den Heuvel A. P. J., Dicker D. T., Kopelovich L., El-Deiry W. S., 2014. Prodigiosin Rescues Deficient p53 Signaling and Antitumor Effects via Upregulating p73 and Disrupting Its Interaction with Mutant p53. Cancer Res., 74(4): 1153−1165. https://doi.org/10.1158/0008-5472.can-13-0955

Klein A. S., Domröse A., Bongen P., Brass H. U. C., Classen T., Loeschcke A., Drepper T., Laraia L., Sievers S., Jaeger K.-E., Pietruszka J., 2017. New Prodigiosin Derivatives Obtained by Mutasynthesis in Pseudomonas putida. ACS Synth. Biol., 6(9): 1757−1765. https://doi.org/10.1021/ acssynbio.7b00099

Lapenda J., Silva P., Vicalvi M., Sena K., Nascimento S., 2015. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World J. Microb. Biot., 31(2): 399−406. https://doi.org/10.1007/s11274-014-1793-y

Montaner B., Navarro S., Piqué M., Vilaseca M., Martinell M., Giralt E., Gil J., Pérez-Tomás R., 2000. Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Brit. J. Pharmacol., 131(3): 585−593. https://doi.org/10.1038/ sj.bjp.0703614

Nguyen H. ,Nguyen K., 2015. Bioefficacy of Serratia marcescens isolated from entomopathogenic nematodes (EPN) and their secondary metabolite prodigiosin against Spodoptera litura. Science and Technology Development, 18.

Prabhu V. V., Hong B., Allen J. E., Zhang S., Lulla A. R., Dicker D. T., El-Deiry W. S., 2016. Small-Molecule Prodigiosin Restores p53 Tumor Suppressor Activity in Chemoresistant Colorectal Cancer Stem Cells via c-Jun-Mediated ΔNp73 Inhibition and p73 Activation. Cancer Res., 76(7): 1989-1999. https://doi.org/ 10.1158/0008-5472.can-14-2430

Rahul S., Chandrashekhar P., Hemant B., Bipinchandra S., Mouray E., Grellier P., Satish P., 2015. In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol. Int., 64(5): 353−356. https://doi.org/10.1016/j.parint. 2015.05.004

Sambrook J., Russell D. W., Russell D. W., 2001. Molecular cloning: a laboratory manual (3-volume set). Immunol, 49: 895−909.

Sumathi C. P., Mohanapriya D., Swarnalatha S., Dinesh M., Sekaran G., 2014. Production of prodigiosin using tannery fleshing and evaluating its pharmacological effects. The Scientific World Journal, 2014. https://doi.org/ 10.1155/2014/290327

Thanh N. ,Quyen L., 2015. Purification and antibacteria activity of anticancer agent prodigiosin from Serratia marcescens M10. Academia Journal of Biology: 37. https://doi.org/10.15625/0866-7160/v37n1 se.6112

Williamson N. R., Simonsen H. T., Ahmed R. A. A., Goldet G., Slater H., Woodley L., Leeper F. J., Salmond G. P. C., 2005. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol. Microbiol., 56(4): 971−989. https://doi.org/10.1111/j.1365-2958.2005. 04602.x

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Abstract View: 162
PDF Downloaded: 98

Published

20-09-2021

How to Cite

Minh Trung, D., Hai Quynh, D. ., & Thuy Duong, N. (2021). Cloning and expression of \(\textit{ pigI}\) gene in \(\textit{Escherichia coli}\) BL21 (DE3). Academia Journal of Biology, 43(3), 59–67. https://doi.org/10.15625/2615-9023/15836

Issue

Section

Articles

Most read articles by the same author(s)