Production of in vitro strawberry (Fragaria × ananassa) plantlets in large-scale system supplemented with silver nanoparticles

Authors

  • Tran Thi Thuong
  • Hoang Thanh Tung Viện Nghiên cứu Khoa học Tây Nguyên https://orcid.org/0000-0002-2614-0429
  • Hoang Dac Khai
  • Vu Thi Hien
  • Vu Quoc Luan
  • Do Manh Cuong
  • Nguyen Ba Nam
  • Nguyen Hoai Chau
  • Bui Van The Vinh
  • Duong Tan Nhut

DOI:

https://doi.org/10.15625/1811-4989/15491

Keywords:

Cây Dâu tây, ethylene, hệ thống nuôi cấy, nano bạc, mật độ

Abstract

The growth of strawberry plantlets in the rooting stage on culture medium supplemented with silver nanoparticles (AgNPs) and the ethylene gas accumulation in plantlet culture bottles were investigated. In addition, different culture systems were first used to produce large-scale Strawberry plantlets. The results showed that shoots (3 cm) were cultured on MS medium supplemented with 0.02 mg/L NAA, 1 g/L activated charcoal, 30 g/L sucrose, 8 g/L agar and 0.5 mg/L AgNPs showed about 4 days earlier rooting formation and the plantlet growth such as plantlet height (5.60 cm), fresh weight (242.67 mg), dry weight (34,67 mg), number of roots/plantlet (6.67), root length (3.40 cm), SPAD (39.30 nmol/cm2) were higher than those in the control after 15 days of culture. Besides, the ethylene gas content in the culture bottle (0.06 ppm) in the 0.5 mg/L AgNPs treatment was lower than as compared to that in the control (0.15 ppm) after 15 days of culture. A shoot density (10 shoots) in 250 mL culture bottle with 40 mL of medium gave optimal growth than those in other treatments after 15 days of culture. Square plastic box culture system (length × width × height: 19 cm × 19 cm × 7 cm; 2.5 L in volume) containing 250 mL MS medium added to 0.5 mg/L AgNPs produced 100 vigorous plantlets; meanwhile, rectangular plastic box system (34 cm × 23 cm × 13 cm; 10 L in volume; 10 L in volume) produced 200 vigorous plantlets. Plantlets derived from 0.5 mg/L AgNPs treatment in the plastic box systems exhibited well acclimatization after 30 and 60 days of culture in the greenhouse.

Downloads

Download data is not yet available.

References

Ali A, Mohammad S, Khan MA, Raja NI, Arif M, Kamil A, Mashwani ZUR (2019) Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artif Cell Nanomed B 47(1): 715-724.

Bhui DK, Bar H, Sarkar P, Sahoo GP, Misra A (2009) Synthesis and UV-vis spectroscopic study of silver nanoparticles in aqueous SDS solution. J Mol Liq 145(1): 33-37.

Cristescu SM, Mandon J, Arslanov D, De Pessemier J, Hermans C, Harren FJ (2013) Current methods for detecting ethylene in plants. Ann Bot 111(3): 347-360.

Chau HN, Bang LA, Buu NQ, Dung TTN, Ha HT, Quang DV (2008) Some results in manufacturing of nanosilver and investigation of its application for disinfection. Adv Nat Sci-Nanosci 9(2): 241-248.

Desikan R, Last K, Harrett‐Williams R, Tagliavia C, Harter K, Hooley R, Neill SJ (2006) Ethylene‐induced stomatal closure in Arabidopsis occurs via AtrbohF‐mediated hydrogen peroxide synthesis. The Plant J 47(6): 907-916.

Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11(1): 1-42.

Dương Tấn Nhựt (2011) Công nghệ sinh học thực vật: Nghiên cứu cơ bản và ứng dụng, Tập 1. NXB. Nông nghiệp Tp. Hồ Chí Minh, 531 trang.

Dương Tấn Nhựt, Nguyễn Xuân Tuấn, Nguyễn Thị Thùy Anh, Hồ Viết Long, Hoàng Thanh Tùng, Nguyễn Bá Nam, Nguyễn Phúc Huy, Vũ Quốc Luận, Vũ Thị Hiền, Lê Thị Thu Hiền, Nguyễn Hoài Châu, Ngô Quốc Bưu (2015) Nghiên cứu ảnh hưởng của nano bạc lên sự nhân chồi, sinh trưởng và phát triển của cây hoa Hồng (Rosa sp.) in vitro. Tạp chí Công nghệ Sinh học 13(2): 231-239.

Đồng Huy Giới, Bùi Thị Thu Hương (2019) Nghiên cứu sử dụng nano bạc trong nhân giống in vitro lan Hồ điệp vàng (Phalaenopsis sp.). Tạp chí Khoa học và Công nghệ Lâm nghiệp 1: 19-24.

El-Mahdy MT, Radi AA, Shaaban MM (2019) Impacts of exposure of Banana to silver nanoparticles and sliver ions in vitro. Sciences 9(3): 727-740.

Gaspar T, Kevers C, Crèvecoeur M, Penel C, Foidart JM, Greppin H (1992) Habituation and vitrification of plants cultured in vitro: a reciprocal relationship. Wiss Z Humboldt Univ Berl Math Naturwiss 41(3): 35-40.

Hà Thị Mỹ Ngân, Trần Đào Hồng Trinh, Đỗ Mạnh Cường, Hoàng Thanh Tùng, Nguyễn Thị Nhật Linh, Vũ Thị Hiền, Phan Lê Hà Nguyễn, Vũ Quốc Luận, Bùi Văn Lệ, Dương Tấn Nhựt (2019) Hạn chế hiện tượng thủy tinh thể và gia tăng tỉ lệ sống của cây con hoa Đồng tiền (Gerbera jamesonii) nuôi cấy in vitro trong môi trường có bổ sung nano bạc. Tạp chí Công nghệ Sinh học 17(1): 115-124.

Haddadi F, Aziz MA, Saleh G, Rashid AA, Kamaladini H (2010) Micropropagation of Strawberry cv. Camarosa: prolific shoot regeneration from in vitro shoot tips using thidiazuron with N6-benzylamino-purine. HortSci 45(3): 453-456.

Hdider C, Desjardins Y (1993) Prevention of shoot vitrification of Strawberry micropropagated shoots proliferated on liquid media by new antivitrifying agents. Canadian J Plant Sci 73(1): 231-235.

Hoàng Thanh Tùng (2018) Hoàn thiện hệ thống nhân giống vi thủy canh cây hoa cúc trắng (Chrysanthemum morifolium). Luận án Tiến sĩ Sinh lý học Thực vật, Đại học Khoa học Huế.

Iqbal T, Tehseen A, Anwar M, Masooma S, Bashir A (2020) A short review on role of nanotechnology in daily life. J Comput Biol 8(3): 24-33.

Kumar GP, Sivakumar S, Siva G, Vigneswaran M, Kumar TS, Jayabalan N (2016) Silver nitrate promotes high-frequency multiple shoot regeneration in Cotton (Gossypium hirsutum L.) by inhibiting ethylene production and phenolic secretion. In Vitro Cell Dev-Pl 52(4): 408-418.

Mahmoud O, Kosar M (2014) In vitro achievement of Strawberry roots formation using AgNO3. Am Eurasian J Agric Environ Sci 14(11): 1281-1286.

Mir H, Rani R, Ahmad F, Sah AK, Prakash S, Kumar V (2019) Phenolic exudation control and establishment of in vitro Strawberry (Fragaria × ananassa) cv. Chandler. Curr J Appl Sci Technol 33(3): 1-5.

Mir JI, Ahmed N, Rashid R, Wani SH, Mir H, Sheikh MA (2010) Micropropagation of Strawberry (Fragaria × ananassa). J Crop Improv 37(2): 153-156.

Munir M, Iqbal S, Baloch JUD, Khakwani AA (2015) In vitro explant sterilization and bud initiation studies of four Strawberry cultivars. J Appl Hortic 17(3): 192-198.

Mustafa Y, Çağlayan S, Cansu T, Emine GE (2011) Effect of in vitro competition on shoot regeneration from hypocotyl explants of Linum usitatissimum. Turkish J Bot 35: 211-218.

Ngan HTM, Cuong DM, Tung HT, Nghiep ND, Le BV, Nhut DT (2020) The effect of cobalt and silver nanoparticles on overcoming leaf abscission and enhanced growth of Rose (Rosa hybrida L. ‘Baby Love’) plantlets cultured in vitro. Plant Cell, Tissue and Organ Culture 141: 393-405.

Nghia LT, Tung HT, Huy NP, Luan VQ, Nhut DT (2017) The effects of silver nanoparticles on growth of Chrysanthemum morifolium Ramat. cv." Jimba" in different cultural systems. Vietnam J Sci Technol 55(4): 503-514

Nguyễn Trần Đông Phương, Bùi Thị Thu Hằng (2017) Bước đầu nhân giống cây Dâu tây New Zealand (Fragaria × ananassa) từ hạt. Tạp chí Khoa học Đại học Mở Tp. Hồ Chí Minh 55(4): 32-37.

Palei S, Das AK, Rout GR (2015) In vitro studies of Strawberry-an important fruit crop: A review. J Plant Sci Res 31(2): 115-131.

Pirtarighat S, Ghannadnia M, Baghshahi S (2019) Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostructure Chem 9(1): 1-9.

Qin Y, Zhang S, Zhang L, Zhu D, Syed A (2005) Response of in vitro Strawberry to silver nitrate (AgNO3). HortSci 40(3): 747-751.

Razzaq A, Ammara R, Jhanzab HM, Mahmood T, Hafeez A, Hussain S (2016) A novel nanomaterial to enhance growth and yield of Wheat. J Nanosci Nanotechnol 2(1): 55-58.

Russell G (2004) Stomatal guard cell measurements using leaf prints. Soc Cert Sen Adv J 4: 137-139

Salachna P, Byczyńska A, Zawadzińska A, Piechocki R, Mizielińska M (2019) Stimulatory effect of silver nanoparticles on the growth and flowering of otted oriental Lilies. Agronomy 9(10): 1-14.

Sarropoulou V, Maloupa E (2017) Effect of the NO donor “sodium nitroprusside”(SNP), the ethylene inhibitor “cobalt chloride”(CoCl2) and the antioxidant vitamin E “α-tocopherol” on in vitro shoot proliferation of Sideritis raeseri Boiss. & Heldr. subsp. raeseri. Plant Cell Tiss Org Cult 128(3): 619-629.

Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. J Plant Physiol Biochem 83: 57-64.

Timoteo CD, Paiva R, dos Reis MV, Claro PIC, Ferraz LM, Marconcini JM, de Oliveira JE (2019) In vitro growth of Physalis peruviana L. affected by silver nanoparticles. 3 Biotech 9(4): 1-9.

Wafaa AF, Wahdan HM (2017) Influence of substrates on in vitro rooting and acclimatization of micropropagated Strawberry (Fragaria × ananassa Duch.). Middle East J Agric Res 6(3): 682-691.

Zia M, Yaqoob K, Mannan A, Nisa S, Raza G, Rehman R (2020) Regeneration response of Carnation cultivars in response of silver nanoparticles under in vitro conditions. Vegetos 33(1): 11-20.

Downloads

Published

2021-10-13

Issue

Section

Articles