NGHIÊN CỨU THÀNH PHẦN HÓA HỌC CỦA QUẢ CÂY GIẢ BỒ ĐÔNG DƯƠNG (*PSEUDUVARIA INDOCHINENSIS* MERR.)

Nguyễn Thị Minh Hằng^{*}, Trần Hữu Giáp, Cao Thị Huệ, Lê Nguyễn Thành, Nguyễn Văn Hùng

Viện Hóa sinh biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam

Đến Tòa soạn 23-01-2014

Abstract

Polycerasoidol (1), *N*-heptacosanoyltryptamine (2), 1,2,4,5-cyclohexanetetrol (3), liriodenin (4) together with β -sitosterol (5) were isolated from the fruits of *Pseuduvaria indochinensis*. Their structures were identified by means of spectroscopic methods such as 1D and 2D NMR, MS. Three compounds 1, 3 and 4 have been isolated from *Pseuduvaria* genus for the first time.

Keywords: *Pseuduvaria indochinensis*, polycerasoidol, liriodenin, 1,2,4,5-cyclohexanetetrol, *N*-heptacosanoyltryptamine.

1. MỞ ĐẦU

Chi Giå bồ (Pseuduvaria) là một trong các chi thực vật còn ít được nghiên cứu trên thế giới cũng như ở Việt Nam. Theo tác giả Phạm Hoàng Hộ [1], ở nước ta chi này chỉ có 2 loài là Giả bồ đông dương và Giả bồ hoa nhỏ. Cây giả bồ đông dương có tên khoa hoc là Pseuduvaria indochinensis Merr. Đây là cây đứng, nhánh đen, có lông rất mịn. Lá có phiến tròn dài, to đến 18x6 cm, mặt trên không lông, xám ôliu, mặt dưới có lông mịn, xám ôliu, gân phụ 13 cặp; cuống dài 8-10 mm. Tán 3-5 hoa đơn phái; hoa đực nhỏ, không tâm bì; cọng hoa 1,5 cm, có lông vàng vàng; cánh hoa trong có cong, chót dính nhau thành tháp; tiểu nhụy nhiều, nhỏ; tâm bì có lông [1]. Cho đến nay, loài cây này còn chưa được nghiên cứu sâu về mặt hóa thực vật cũng như hoạt tính sinh học. Trong khi thực hiện dự án Pháp - Việt "Nghiên cứu hóa thực vật của thảm thực vật Việt Nam", dịch chiết etyl axetat của quả cây được phát hiện có khả năng ức chế 16 % sự phát triển của dòng tế bào ung thư buồng trứng TG1. Trong bài báo này, chúng tôi thông báo về quá trình phân lập và xác định cấu trúc của các chất polycerasoidol (1), liriodenin (2), 1,2,4,5-cyclohexanetetrol (3), N-heptacosanoyltryptamine (4) và β -sitosterol (5) từ các dịch chiết của quả cây Giả bồ đông dương.

2. THỰC NGHIỆM VÀ PHƯƠNG PHÁP NGHIÊN CỨU

2.1. Mẫu thực vật

Quả cây Giả bồ đông dương (*P. indochinensis*) được thu hái tại Phù Yên, Sơn La vào ngày 02 tháng 08 năm 2013 và được TS. Nguyễn Quốc Bình định tên. Mẫu tiêu bản VN2079 được lưu giữ tại phòng thực vật - Viện Sinh thái và Tài nguyên sinh vật -Viện Hàn lâm Khoa học và Công nghệ Việt Nam. Mẫu thực vật sau khi thu hái được phơi khô trong bóng râm và sấy lại ở nhiệt độ 50-55 °C trong vòng 2 giờ rồi xay thành bột nhỏ.

2.2. Hóa chất thiết bị

Sắc ký lớp mỏng (TLC): Sắc ký lớp mỏng được thực hiện trên bản mỏng tráng sẵn DC-Alufolien 60 F254 (Merck). Phát hiện chất bằng đèn tử ngoại ở bước sóng 254 nm và dùng thuốc thử là dung dịch Ceri sunphat được phun đều lên bản mỏng, sấy khô rồi hơ nóng từ từ đến khi hiện màu.

Sắc ký cột (CC): Sắc ký cột được tiến hành với chất hấp phụ là sillica gel pha thường và Sephadex LH-20. Sillica gel pha thường có cỡ hạt là 0,040-0,063 mm (240-430 Mesh).

Phổ cộng hưởng từ hạt nhân (NMR): được ghi bằng máy Bruker AM500 FT-NMR Spectrometer với chất chuẩn nội là TMS.

Phổ khối lượng (ESI-MS): được đo trên hệ máy AGILENT 1200 series LC-MSD Ion Trap.

2.3. Chiết xuất và phân lập chất

Quả cây đã xay nhỏ (0,83 kg) được chiết siêu âm lần lượt với các dung môi *n*-hexan, etyl axetat và metanol. Mỗi dung môi được chiết 3 lần, mỗi lần siêu âm trong vòng 2 giờ ở nhiệt độ 45 °C. Gộp chung dịch từ 3 lần chiết của từng dung môi rồi cất loại dung môi dưới áp suất giảm thu được các cặn chiết tương ứng là *n*-hexan (8 g), etyl axetat (40 g) và metanol (40 g). Phần bã còn lại tiếp tục được ngâm với 1,5 lít dung dịch HCl có pH 4,0. Trung hòa dịch chiết thu được bằng dung dịch NaOH đến pH 11,0 rồi chiết bằng etyl axetat. Thu lấy pha etyl axetat, làm khô bằng Na₂SO₄ khan rồi cất loại dung môi dưới áp suất giảm thu được cặn ancaloit (0,17 g).

Căn etyl axetat (40 g) được phân tách trên côt sắc ký silica gel, rửa giải bằng phương pháp gradient hệ dung môi *n*-hexan/etyl axetat (90:10 \rightarrow 0:100), thu được 6 phân đoạn (E1-E6). Phân đoạn E3 tiếp tục được phân tách trên cột sắc ký silica gel, rửa giải bằng hệ dung môi n-hexan/axeton (98:2) thu được 5 phân đoan (E3.1-E3.5). Rửa phân đoan E3.3 bằng hỗn hợp *n*-hexan/axeton thu được chất 5 (20 mg). Rửa phân đoạn E3.5 bằng axeton thu được chất 2 (17 mg). Phân đoạn E5 được phân tách trên cột sắc ký silica gel, rửa giải theo phương pháp gradient hệ dung môi *n*-hexan/axeton (97:3 \rightarrow 70:30) thu được 5 phân đoạn (E5.1-E5.5). Phân đoạn E5.2 tiếp tục được tinh chế bằng côt silica gel, rửa giải với hê dung môi CH₂Cl₂/MeOH (100:1) thu được 4 phân đoan, E5.2.1-E5.2.4. Phân đoan E5.2.2 (0,3 g) tiếp tục được tinh chế bằng phương pháp sắc ký bản mỏng điều chế trên chất hấp phụ silica gel với hệ dung môi n-hexan/etyl axetat (4:1) thu được chất 1 (29 mg).

Cặn metanol (40 g) được phân tách trên cột Sephadex LH-20 rửa giải bằng MeOH, thu được 3 phân đoạn kí hiệu là M1-M3. Phân đoạn M2 được tinh chế trên cột silica gel với hệ dung môi rửa giải *n*-hexan:axeton gradient (100:0 \rightarrow 80:20 thu được 7 phân đoạn nhỏ M2.1-M2.7. Phân đoạn nhỏ M2.4 được tinh chế trên cột Sephadex LH-20 với hệ dung môi rửa giải MeOH thu được chất 1 (25 mg). Kết tinh phân đoạn M2.6 trong hỗn hợp dung môi CH₂Cl₂/MeOH thu được chất 3 (22 mg).

Cặn ancaloit (0,17 g) được phân tách trên cột Sephadex LH-20 với hệ dung môi rửa giải MeOH/CH₂Cl₂ (8:2) thu được 3 phân đoạn kí hiệu là A1-A3. Phân đoạn A2 được tinh chế bằng sắc ký bản mỏng điều chế với hệ dung môi MeOH/CH₂Cl₂ (0,5:9,5) thu được chất **4** (3 mg).

2.4. Hằng số vật lý và dữ liệu phổ của các chất đã phân lập

Polycerasoidol (1): Chất dầu màu vàng. $[\alpha]_D$ +6,5° (c 0,45, MeOH).

¹H NMR (500 MHz, metanol- d_4) $\delta_{\rm H}$ ppm: 1,25 (3H, s, H-15); 1,50-1,65 (2H, m, H-4); 1,59 (3H, s,

H-14); 1,70-1,82 (2H, m, H-2); 1,86 (3H, s, H-12); 2,07 (2H, t, J = 7,5 Hz, H-8); 2,09 (3H, s, 6'-C<u>H</u>₃); 2,15 (2H, q, J = 7,5 Hz, H-5); 2,55 (2H, q, J = 7,0Hz, H-9); 2,69 (2H, t, J = 7,0; H-1); 5,18 (1H, t, J =7,5; H-6); 5,92 (1H, t, J = 7,0; H-10); 6,33 (1H, d, J =2,5 Hz, H-3'); 6,42 (1H, d, J = 2,5 Hz, H-5'). ¹³C NMR (125 MHz, metanol- d_4) $\delta_{\rm C}$ ppm: 15,78 (C-14); 16,29 (6'-<u>C</u>H₃); 20,96 (C-2); 23,18 (C-5); 23,43 (C-1); 24,38 (C-15); 29,09 (C-9); 32,72 (C-2); 40,21 (C-8); 40,57 (C-4); 76,22 (C-3); 113,58 (C-3'); 116,60 (C-5'), 122,31 (C-2'); 126,22 (C-7); 127,77 (C-6'); 128,84 (C-11); 135,45 (C-6); 143,17 (C-10); 146,37 (C-1'); 150,33 (C-4'); 171,73 (C-13). ESI-MS *m/z*: 357 [M-H]⁻.

N-heptacosanoyltryptamine (2): Chất vô định hình, màu trắng.

¹H NMR (500 MHz, CDCl₃&MeOD) $\delta_{\rm H}$ ppm: 0,70 (3H, t, J = 7,5 Hz, H-27'); 1,25 (46 H, br s, H-4' \rightarrow H-26'); 1,38 (2H, qui, J = 7,0 Hz, H-3'); 1,94 (2H, t, J = 7,5 Hz, H-2'); 2,79 (2H, t, J = 7,0 Hz, H-10); 3,36 (2H, t, J = 7,5 Hz, H-11); 6,87 (1H, s, H-2); 6,90 (1H, t, J = 8,0 Hz, H-5); 6,98 (1H, t, J = 8,0Hz, H-6); 7,20 (1H, d, J = 8,0 Hz, H-7); 7,41 (1H, d, J = 7,5 Hz, H-4). ¹³C NMR (125 MHz, CDCl₃&MeOD) $\delta_{\rm C}$ ppm: 13,71 (C-27'); 22,40 (C-26'); 24,91 (C-10); 25,55 (C-3'); 29,01-29,42 (C-4' \rightarrow C-24'); 31,66 (C-25'); 36,40 (C-2'); 39,65 (C-11); 111,13 (C-7); 112,01 (C-3); 118,15 (C-4); 118,73 (C-5); 121,47 (C-6); 122,07 (C-2); 127,10 (C-9); 136,32 (C-8); 174,18 (C-1').

1,2,4,5-cyclohexanetetrol (3): Tinh thể màu trắng, nóng chảy ở 203-204 °C.

¹H NMR (500 MHz, metanol- d_4 + CDCl₃) $\delta_{\rm H}$ ppm: 1,85 (4H, br s, 2H-6 + 2H-3), 3,74 (4H, br s, H-1+ H-2+H-4+H-5). ¹³C NMR (125 MHz, metanol- d_4 + CDCl₃) $\delta_{\rm C}$ ppm: 35,58 (C-6+C-3); 71,55 (C-1+C-2+C-4+C-5). ESI-MS m/z: 149 [M+H]⁺.

Liriodenin (4): Tinh thể hình kim, màu vàng, nóng chảy ở 273-274 °C.

¹H NMR (500 MHz, metanol- d_4) $\delta_{\rm H}$ ppm: 6,31 (2H, s, H-12); 7,14 (1H, s, H-3); 7,51 (1H, dt, J =8,0; 1,0 Hz, H-9); 7,69 (1H, dt, J = 8,5; 1,5 Hz, H-10); 7,74 (1H, d, J = 5,0 Hz, H-4); 8,45 (1H, dd, J =8,0; 1,0 Hz, H-11); 8,58 (1H, d, J = 8,5 Hz, H-8); 8,72 (1H, d, J = 5,0 Hz, H-5). ESI-MS *m/z*: 276 [M+H]⁺.

β-sitosterol (5): Tinh thể dạng phiến, màu trắng.

3. KẾT QUẢ VÀ THẢO LUẬN

Chất 1 được phân lập dưới dạng dầu màu vàng. Trên phổ ¹H NMR, ở vùng trường thấp có tín hiệu cộng hưởng của hai proton có quan hệ *meta* trong

hằng số tương tác nhỏ [$\delta_{\rm H}$ 6,33 (1H, d, J = 2,5 Hz, H-3') và 6,42 (1H, d, J = 2,5 Hz, H-5')]. Hai proton olephin của hai nhóm metin khác nhau cộng hưởng dưới dang triplet [$\delta_{\rm H}$ 5,18 (1H, t, J = 7,5; 1,5 Hz, H-6) và 5,92 (1H, t, J = 7,0; 1,5 Hz, H-3)] do đó 2 proton này thuộc về 2 liên kết đôi bi thế trong một mạch cacbon dài. Ở vùng trường cao hơn có tín hiệu cộng hưởng của 6 nhóm metylen trong đó một nhóm công hưởng dưới dang triplet [$\delta_{\rm H}$ 2,69 (2H, t, J = 1,5; 7,0 Hz, H-1)], hai nhóm xuất hiện dưới dạng quartet [$\delta_{\rm H}$ 2,55 (2H, q, J = 1,5; 7,0 Hz, H-9) và $\delta_{\rm H}$ 2,15 (2H, q, J = 1,5; 7,5 Hz, H-5)], một nhóm dạng triplet rộng $[\delta_{\rm H} 2,07 (2H, t, J = 7,5 \text{ Hz}, \text{H-8})]$, và hai nhóm dạng multilet [δ_H 1,50-1,65 (2H, m, H-4) và $\delta_{\rm H}$ 1,70-1,82 (2H, m, H-2)]. Ngoài ra, trên phổ ¹H NMR xuất hiện tín hiệu cộng hưởng của 4 nhóm metyl đều dưới dạng singlet [$\delta_{\rm H}$ 1,25 (3H, s, H-15), $\delta_{\rm H}$ 1,59 (3H, s, H-14), $\delta_{\rm H}$ 1,86 (3H, s, H-12) và $\delta_{\rm H}$ 2,09 (3H, s, 6'-CH₃)]. Trên phổ ¹³C NMR, DEPT90 & DEPT135 xác định được sự có mặt của 22 nguyên tử cacbon trong phân tử chất 1 bao gồm 4 nhóm metyl, 6 nhóm metylen, 6 nhóm metin không no, 7 cacbon khác trong đó có 2 cacbon-sp² và một cacbon-sp³ gắn với oxi (δ_C 146,37; 150,33 và δ_C 76,22) cùng với 4 cacbon-sp² bậc bốn; và một nhóm cacboxyl (δ_{C} 171,73). Phố khối ESI-MS của 1 cho pic giả ion phân tử $[M-H]^-$ ở m/z 357 suy ra phân tử lượng của chất là 358. Các dữ kiên phố trên cho phép xác định công thức phân tử của chất là C₂₂H₃₀O₄. Trên phổ ¹H-¹H COSY có tín hiệu tương tác của H-4/H-5, H-8/H-9, H-1/H-2, H-9/H-10, H-5/H-6. Trên phổ HMBC, các tương tác của H-3' với C-1, C-5', C-1' và C-4'; H-5' với 6'-CH₃, C-3', C-1' và C-2'; H-1 với C-3, C-1', C-2' và C-3'; H-2 với C-3, C-2', C-1 và C-4 cho phép khẳng định sự có mặt của một khung chroman trong phân tử của 1. Dưa trên các tín hiệu tương tác trên phổ HMBC có thể xác định được vị trí của các nhóm metyl trong phân tử. Tín hiệu ở $\delta_{\rm H}$ 1,25 (3H, s) thuộc về H-15 do sự tương tác của các proton này với C-2, C-3 và C-4. Tín hiệu ở $\delta_{\rm H}$ 1,59 (3H, s) được gán cho H-14 do các proton này có tương tác với C-6, C-7 và C-8. Tín hiệu ở $\delta_{\rm H}$ 1,86 (3H, s) thuộc về nhóm H-12 do nó có tương tác với C-10, C-11 và C-13. Tín hiệu của một nhóm metyl nữa ở $\delta_{\rm H}$ 2,09 (3H, s) thuộc về nhóm 6'-CH3 do tương tác của các proton nhóm này với C-1', C-6' và C-5'. Qua tương tác của 2 proton H-4 với

một vòng benzen xuất hiện dưới dạng 2 doublet với

C-3, C-2, C-5 và C-15 xác định được mạch nhánh cacbon dài gắn vào khung chroman ở vị trí C-3. Trên phổ NOESY, không có tương tác của H-6 và H-14 do đó cấu hình của liên kết đôi C-6/C-7 được xác định là E còn H-10 và H-12 có tương tác với nhau do đó liên kết đôi C-10/C-11 có cấu hình Z. Đặc biệt trên phổ NOESY có tín hiệu tương tác của H-15 với H-4, H-5, H-1 và H-2 cho phép xác định cấu hình (S) ở vị trí C-3. Kết hợp tất cả các dữ kiện phổ trên xác định cấu trúc của chất 1 là polycerasoidol. Polycerasoidol là một hợp chất sesquitecpenoit chuyển hóa chứa vòng benzopyran được coi là dẫn xuất prenyl hóa của hydroquinone đã được phân lập từ nhiều loài sinh vật biển [2-5] nhưng lại ít gặp ở các loài thực vật bậc cao [6].

Chất 2 được phân lập dưới dạng chất vô định hình, màu trắng. Trên phổ ¹H NMR của 2, các tín hiệu cộng hưởng của một nhóm metyl dưới dạng triplet [$\delta_{\rm H}$ 0,70 (3H, J = 7,5 Hz, H-27')], một số proton cộng hưởng chồng chéo lên nhau tạo thành môt tín hiệu singlet rất lớn $[\delta_{\rm H} 1,25 (46 \text{ H}, \text{ br s}, \text{H-4})]$ \rightarrow H-26')], một nhóm metylen dưới dạng quintet [1,38 (2H, quin, J = 7,0 Hz, H-3')] và một nhóm metylen dưới dạng triplet [$\delta_{\rm H}$ 1,94 (2H, t, J = 7,5 Hz, H-2')] cho biết trong phân tử có chứa một mạch cacbon dài. Tín hiệu cộng hưởng của 2 nhóm metylen dưới dạng 2 triplet ở vùng trường thấp hơn [$\delta_{\rm H}$ 2,79 (2H, t, J = 7,0 Hz, H-10) và $\delta_{\rm H}$ 3,36 (2H, t, J = 7,5Hz, H-11)] cho phép xác đinh sư có mặt của một chuỗi liên kết -CH₂-CH₂- trong phân tử. Sự dịch chuyển của tín hiệu cộng hưởng về phía trường thấp hơn $[\delta_{\rm H}, 3, 36]$ chứng tỏ nhóm metylen này có liên kết trực tiếp với nguyên tử N. Ngoài ra, trên phổ ¹H NMR của 2 còn cho thấy tín hiệu công hưởng của một khung indol bị thế ở vòng B gồm có 5 proton của các nhóm metin liên kết đôi [$\delta_{\rm H}$ 6,87 (1H, s, H-2), $\delta_{\rm H}$ 6,90 (1H, t, J = 8,0 Hz, H-5), $\delta_{\rm H}$ 6,98 (1H, t, J = 8,0Hz, H-6), $\delta_{\rm H}$ 7,20 (1H, d, J = 8,0 Hz, H-7), $\delta_{\rm H}$ 7,41 (1H, d, J = 7,5 Hz, H-4)]. Phổ ¹³C NMR cùng với DEPT90 và DEPT135 cho phép xác đinh phân tử 2 có chứa 21 nguyên tử cacbon thuộc về một nhóm metyl (δ_C 13,71), 6 nhóm metylen (δ_C 22,40; δ_C 24,91; δ_C 25,55; δ_C 31,66; δ_C 36,40 và δ_C 39,65) và môt số nhóm metylen khác của mach cacbon dài (δ_{C} 29,01-29,42), 5 nhóm metin của liên kết đôi ($\delta_{\rm C}$ 111,13; $\delta_{\rm C}$ 118,15; $\delta_{\rm C}$ 118,73; $\delta_{\rm C}$ 121,47 và $\delta_{\rm C}$ 122,07), một nhóm cacbonyl (δ_C 174,18) và - 3 cacbon bâc bốn khác ($\delta_{\rm C}$ 127,10; $\delta_{\rm C}$ 136,32; $\delta_{\rm C}$

112,01). Trong số các nhóm metylen có một nhóm cộng hưởng ở trường thấp hơn so với trường cộng hưởng của các cacbon nhóm metylen ($\delta_{\rm C}$ 39,65) chứng tỏ rằng nhóm metylen này có liên kết trực tiếp với nguyên tử N. Điều này hoàn toàn phù hợp với tín hiệu cộng hưởng của 2 proton thuộc một nhóm metylen trên phổ ¹H NMR ($\delta_{\rm H}$ 3,36). Kết hợp các dữ kiện phổ trên, công thức phân tử của 2 được xác định là C₃₇H₆₄N₂O. Phân tích các phổ HSQC và HMBC cho phép xác đinh được vi trí các nhóm trong phân tử. Phổ HMBC cho biết tương tác giữa H-10 với C-11, C-3, C-2 và C-9 cho biết môt đầu mach -CH₂-CH₂gắn vào khung indol ở vị trí C-3. Tương tác giữa H-11 với C-10, C-3 và C-21 cho biết thêm đầu còn lại của mạch này gắn với một nhóm cacbonyl (δ_C 174,18; >C=O) qua môt nhóm amin (-NH-). Tương tác của H-2' với nhóm cacbonyl và C-3', C-4' và tương tác của các proton nhóm metylen khác với các cacbon trong mach dài cho biết mach cacbon này nối với nhóm cacbonyl. Qua các dữ liêu phổ trên cấu trúc của 2 được xác định là một tryptamine có tên gọi *N*-heptacosanovltryptamine [7, 8].

Chất 3 được phân lập dưới dạng tinh thể màu trắng, nóng chảy ở 203-204 °C. Trên phổ ¹H NMR chỉ có duy nhất 2 tín hiệu cộng hưởng ở δ_H 1,85 dưới dạng singlet rộng và ở δ_H 3,74 cũng có dạng singlet rộng có tích phân bằng nhau. Phổ ¹³C NMR cũng chỉ cho duy nhất 2 tín hiệu công hưởng tai $\delta_{\rm C}$ 35,58 và 71,55. Sư có mặt của tín hiệu tại $\delta_{\rm C}$ 71,55 cho biết sự có mặt của nhóm oxymetin trong phân tử (-CH-OH). Qua các dữ liêu phổ trên bước đầu đưa đến nhận định đây là chất có phân tử đối xứng. Kết hợp với sự xuất hiện của pic $[M+H]^+$ tại m/z 149 cho phép suy ra phân tử lượng của chất là 148 và công thức phân tử là $C_6H_{12}O_4$. Từ các dữ kiên phổ trên có suy ra cấu trúc của 3 là 1,2,3,4thê cyclohexanetetrol. Chất này đã được phân lập trước đây từ tảo Monochrysis lutheri [9].

Chất 4 được phân lập dưới dang tinh thể hình kim, màu vàng, nóng chảy ở 273-274 °C. Phổ ESI-MS có píc $[M+H]^+$ xuất hiện tại m/z 276 suy ra phân tử lượng của chất là 275. Điều này bước đầu cho phép nhận biết đây là một hợp chất chứa N trong phân tử rất có thể là một hợp chất ancaloit. Phố ¹H NMR chỉ có tín hiệu cộng hưởng ở vùng trường thấp. Tín hiệu cộng hưởng của hai proton dưới dạng singlet [$\delta_{\rm H}$ 6,31 (2H, s, H-12)] rất đặc trưng cho sự có mặt của một nhóm metylenedioxy trong phân tử. Một proton khác cũng cộng hưởng dưới dạng singlet $[\delta_{\rm H} 7, 14]$. Ngoài ra, còn có 6 proton thuộc về 2 hệ tương tác cộng hưởng ở vùng trường thấp hơn. Hệ tương tác thứ nhất gồm có 4 proton của một vòng benzen thế 1.2 xuất hiện dưới dang 2 doublet $[\delta_{\rm H}]$ 8,45 (1H, d, J = 8,0; 1,0 Hz, H-11); 8,58 (1H, d, J = 8,5 Hz, H-8)] và 2 double triplet [$\delta_{\rm H}$ 7,51 (1H, dt, J = 8,0; 1,0 Hz, H-9); 7,69 (1H, dt, J = 8,5; 1,5 Hz, H-10)]. Hê tương tác thứ hai gồm có hai proton của một liên kết đội có cấu hình cis xuất hiện dưới dang 2 doublet [$\delta_{\rm H}$ 7,74 (1H, d, J = 5,0 Hz, H-4) và 8,72 (1H, d, J = 5,0 Hz, H-5)]. Proton H-5 có độ dịch chuyển hóa học lớn hơn so với độ dịch chuyển của một proton dạng olephin bình thường chứng tỏ rằng C-5 có liên kết với nguyên tử có độ âm điện lớn hơn C. Từ các dữ kiên phổ trên cùng việc với tham khảo các tài liêu [10, 11] cho phép xác đinh cấu trúc của chất này là liriodenin. Đây là một hợp chất ancaloit dạng oxoaporphine đã từng được phân lập từ rất nhiều chi thực vật thuộc họ Na như Annona, Asimina, Cananga, Lauraceae.... Theo các tài liệu đã công bố, chất này thể hiện khả năng chống ung thư, có khả năng gây độc tế bào đối với các dòng tế bào ung thư biểu mô mũi hong người [12].

Chất 5 được nhận dạng là β -sitosterol dựa trên sự so sánh về R_f với chất chuẩn trên sắc ký bản mỏng.

4. KÉT LUÂN

Từ quả cây Giả bồ đông dương (*Pseuduvaria indochinensis*), chúng tôi đã phân lập được các chất polycerasoidol (1), *N*-heptacosanoyltryptamine (2), 1,2,4,5-cyclohexanetetrol (3), liriodenin (4) và β sitosterol (5). Trong số các chất này chỉ có liriodenin là một trong số 4 chất ancaloit đã được phân lập trước đây từ cây giả bồ đông dương. Đây là lần đầu tiên các chất polycerasoidol, *N*-heptacosanoyltryptamine và 1,2,4,5-cyclohexanetetrol được tìm thấy trong cây Giả bồ đông dương nói riêng và trong chi *Pseuduvaria* nói chung. Các kết quả này mới chỉ là những nghiên cứu bước đầu về thành phần hóa học và hoạt tính sinh học của cây Giả bồ đông dương.

Lời cám on: Nghiên cứu này được tài trợ bởi Quỹ phát triển khoa học và công nghệ quốc gia (NAFOSTED) trong đề tài mã số 104.01-2012.23. Các tác giả chân thành cảm on ThS. Đào Đình Cường, TS. Nguyễn Quốc Bình đã giúp đỡ trong việc thu hái mẫu thực vật và CN. Hà Thị Thoa đã giúp đỡ nhóm nghiên cứu hoàn thành công trình này.

TÀI LIỆU THAM KHẢO

- Phạm Hoàng Hộ. *Cây cỏ Việt Nam*, Nxb. Trẻ, quyển 1 trang 276 (1999).
- R. Valls, L. Piovetti, B. Banaigst, A. Praud, Secondary metabolites from Morocco brown algae of the genus Cystoseira, Phytochemistry, 32(4), 961-966 (1993).

- Aiya Sato, Takamasa Shindo, Naomi Kasanuki, Kazuo Hasegawa. Antioxidant Metabolites from the Tunicate Amaroucium Multiplicatum, J. Nat. Prod., 52(5), 975-981 (1989).
- N. M. Targett, W. S. Keeran. A Terpenehydroquinone from the Marine Ascidian Aplidium constellatum, J. Nat. Prod., 47(3), 556-557 (1984).
- Peter Djura, Donald B. Stierle, Brian Sullivan, D. John Faulkner, Edward V. Arnold, Jon Clardy. Some metabolites of the marine sponges Smenospongia aurea and Smenospongia (.ident. Polyfibrospongia) echina, J. Org. Chem., 45(8), 1435-1441 (1980).
- M. Carmen Gonzalez, Angel Serrano, M. Carmen Zafra-Polo, Diego Cortes. *Polyserasoidin and Polycerasoidol, two new prenylated benzopyran derivatives from Polyalthia cerasoides*, Journal of Natural Products, 58(8), 1278-1284 (1995).
- 7. Yang-Chang Wu, Fang-Rong Chang and Chung-Yi Chen. *Tryptamine-Derived Amides and Alkaloids from*

Liên hệ: Nguyễn Thị Minh Hằng

Viện Hóa sinh biển Viện Hàn lâm Khoa học và Công nghệ Việt Nam Nhà B1, 18 Hoàng Quốc Việt, Cầu Giấy, Hà Nội Email: hanghoahctn@yahoo.com Điện thoại: 04 37916337.

the Seeds of Annonaatemoya, J. Nat. Prod., **68(3)**, 406-408 (2005).

- M. Uki, H. Noriyuki, F. Yoshinori, S. Anjani, Yogesh Kumar Gupra, S. Mahendra. *N-fatty acyl tryptamines from Annona reticulata*, Phytochemistry, **34(6)**, 1633-1635 (1993).
- J. D. Ramathan, J. S. Craigie, J. McLachlan, D. G. Smith, A. G. McInnes. *The occurrence of D-(+)-14/25-cyclohexanetetrol in Monochrysis lutheri droop*, Tetrahedron Letters, **7(14)**, 1527-1531 (1966).
- 10. Zhong Shou-Ming, Zhao Shou-Shun and Xie Ning. *Alkaloids from Pseuduvaria indochinensis*, Phytochemistry, **27(12)**, 4004-4005 (1988).
- I. R. C. Bick and C. K. Douglas. *Yellow alkaloids of Atherosperma moscatum Labill*, Tetrahedron Letters, 25, 1629-1633 (1964).
- 12. Dictionary of Natural products, CRC Press 1982-2009.