NGHIÊN CỨU QUY TRÌNH TỔNG HỢP FEBRIFUGINE HYDROCHLORIDE

Đỗ Thị Kim Phượng^{1,3}, Đoàn Thị Mai Hương^{1*}, Vũ Văn Nam¹, Trần Văn Hiệu¹, Trương Bích Ngân¹, Lê Công Vinh¹, Phạm Văn Cường¹, Nguyễn Văn Hùng¹, Vo Thanh Giang², Châu Văn Minh¹

¹Viện Hóa sinh biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
²Trường Đại học Paris 11, Cộng hòa Pháp
³Học viện Quân y, Hà Đông, Hà Nội
Đến Toà soan 21-01-2014

Abstract

Febrifugine, a quinazoline alkaloid, isolated from *Dichroa febrifuga* roots, shows powerful antimalarial activity against *Plasmodium falciparum*. Strong liver toxicity has precluded febrifugine as a potential clinical drug. However, the potent antimalarial activity of febrifugine has stimulated medicinal chemists to pursue compounds derived from febrifugine, which may be valuable leads for novel drugs. Total synthesis and structural modification of febrifugine have been made. Among the reported asymmetric approaches to febrifugine, one of the most straight forward approaches to construct the 2-substituted 3-hydroxy piperidine is the stereoselective reaction of 3-hydroxy-piperidine N-acyliminium ions with the nucleophiles. In this study, we synthesized febrifugine hydrochloride (13) from L-glutamic acid (1) base on the asymmetric BF₃.Et₂O catalyzed nucleophilic reactions. The precursor 12 was formed by open epoxy ring using triethylamine and then oxidation with Dess-Martin periodinane. Their structures were established by MS and NMR spectroscopies.

Keywords: Febrifugine, antimalarial activity.

1. MỞ ĐẦU

Febrifugine là môt ancaloit được Koepfli và các cộng sự phân lập lần đầu tiên vào năm 1946 từ rễ cây Dichroa febrifuga với hàm lượng thấp, cho đến năm 1953 thì người ta mới phát hiện ra hoạt tính chống sốt rét của hợp chất này [1-3]. Febrifugine có hoạt tính chống sốt rét rất mạnh, ước tính mạnh khoảng hơn 100 lần so với quinine đối với chủng ký sinh trùng sốt rét Plasmodium lophurae [3-5]. Việc lấy rễ cây để phân lập hoạt chất febrifugine làm tổn hại đến hệ sinh thái, mặt khác hàm lượng của hoạt chất này trong cây rất thấp, do vậy việc tổng hợp toàn phần đã được nhiều nhà nghiên cứu quan tâm. Trên thế giới, đã có một số công trình công bố về việc tổng hợp toàn phần của febrifugine và các dẫn xuất, kết quả cho thấy một số dẫn xuất của hợp chất này có hoạt tính chống sốt rét và chống ung thư rất đáng quan tâm [6-9]. Với kinh nghiệm tổng hợp các biệt dược chống sốt rét, chúng tôi định hướng cho việc tổng hợp Febrifugine và các dẫn xuất nhằm tìm kiếm các hợp chất có hoạt tính cao hơn và ưu việt hơn. Trước đây, chúng tôi đã công bố quy trình tổng hop hop chất trung gian 8 từ L-glutamic [10]. Trong khuôn khổ bài báo này, chúng tôi trình bày quy trình tổng hợp hợp chất febrifugine hydrochloride từ axit L-glutamic (1).

2. THỰC NGHIỆM

Thiết bị: Phổ NMR được ghi trên máy Bruker Avance 500 MHz với TMS làm chất chuẩn nội. Phổ khối lượng được đo trên máy đo phổ khối lượng LC/MSD Agilent series 1100.

Hoá chất: Hợp chất axit L-glutamic (1) và các hoá chất dùng cho tổng hợp hữu cơ mua của hãng Aldrich và Merck.

Tổng hợp axit (S)-2-amino-5-benzyloxy-5-oxo pentanoic (2)

Cho 20 g axit L-glutamic (13,6 mmol) và ancol benzyl (21 ml; 20,4 mmol) vào trong bình cầu chứa 20 ml toluene. Hỗn hợp phản ứng được khuấy và đun nóng ở 45 °C, sau khi nhiệt độ đạt 45 °C thì cho thêm axit metan sulfonic (10,6 ml; 16,32 mmol) vào dung dịch phản ứng. Sau 3 giờ, hỗn hợp phản ứng được đưa về 30 °C và khuấy tiếp trong 4 giờ. Dừng phản ứng, cho thêm 40 ml nước vào dung dịch phản ứng, phân lớp và loại bỏ pha dung môi hữu cơ, lọc lấy phần nước rồi cho thêm 40 ml etanol sau đó nhỏ từ từ dung dịch ammoniac 20 % (20 ml) cho đến khi pH = 6 thu được chất kết tủa. Lọc chất kết tủa và rửa với ethanol lạnh (30 ml x 2) sau đó rửa bằng nước (30 ml x 2), làm khô dưới chân không ở 50 °C thu được sản phẩm axit L-benzyl glutamic (2) dưới dạng chất rắn vô định hình màu trắng (19,7 g, hiệu suất 61 %). Hợp chất được so sánh trên bản mỏng TLC với chất axit L-benzyl glutamic của Aldrich.

Tổng hợp (S)-5-benzyl-1-metyl-2-hydroxy pentanedioat (3)

1,7 g axit L-benzyl glutamic (2) (7,1 mmol) được hòa tan trong bình cầu chứa hỗn hợp dung môi AcOH/H₂O (1/4; 40 mL) và làm lạnh xuống 0 °C. Dung dịch NaNO₂ (980 mg; 14,2 mmol) trong 15 ml nước được nhỏ từ từ vào phản ứng ở 0 °C (khoảng 15 phút). Hỗn hợp phản ứng được khuấy ở nhiệt độ phòng trong 3 giờ. Thêm nước rồi chiết bằng EtOAc, lấy pha hữu cơ, làm khô với Na₂SO₄ loại dung môi dưới áp suất giảm thu được sản phẩm và được sử dụng ngay cho phản ứng tiếp theo.

Cho 50 ml DMF vào bình cầu chứa sản phẩm thu được ở trên, sau đó cho thêm 1,19 g NaHCO₃ (14,2 mmol) và MeI (0,88 ml; 14,2 mmol) vào dung dịch phản ứng. Hỗn hợp phản ứng được khuấy trong 20 giờ ở nhiệt độ phòng. Sau đó hỗn hợp phản ứng được chiết phân bố bằng EtOAc/H₂O, lấy pha hữu cơ, làm khô bằng Na₂SO₄, rồi loại dung môi dưới áp suất giảm thu được cặn chất. Cặn chất được tinh chế trên cột sắc ký silica gel với hệ dung môi *n*-hexan/EtOAc tỷ lệ 70/30 thu được sản phẩm **3** dưới dạng chất dầu màu vàng nhạt (1,27 g, hiệu suất tổng hai phản ứng 70,2 %).

¹H NMR (500 MHz, CDC1₃) δ (ppm): 1,97 (m, 1H, H-3a); 2,19 (m, 1H, H-3b); 2,54 (m, 2H, H-4a và H-4b); 2,88 (d, J = 5,5 Hz, 1H, OH); 3,78 (s, 3H, OCH₃); 4,25 (m, 1H, H-2); 5,12 (s, 2H, CH₂-Ph); 7,33-7,36 (m, 5H, Ph).

Tổng hợp (S)-5-benzyl-1-metyl-2-axetoxy pentanedioat (4)

Hòa tan 3,2 g (12,6 mmol) chất **3** trong 3 ml pyridin, sau đó thêm (3 ml, 37,8 mmol) Ac₂O vào bình phản ứng. Hỗn hợp phản ứng được đun ở 60 °C trong 1h, rồi dừng phản ứng, thêm nước và chiết với etyl axetat (4 x 500 mL). Pha hữu cơ được làm khô bằng Na₂SO₄, loại dung môi dưới áp suất giảm thu được cặn chất. Cặn chất được tinh chế trên cột sắc ký silica gel với hệ dung môi *n*-hexan/EtOAc tỷ lệ 8/2 thu được 3,353 g sản phẩm **4** dưới dạng chất dầu màu trắng. Hiệu suất phản ứng 90 %.

¹H NMR (500 MHz, CDC1₃) δ (ppm): 2,10 (3H, s, OAc); 2,11-2,25 (2H, m, CH₂-3); 2,46 (2H, m, CH₂-4); 3,72 (3H, s, OCH₃); 5,04 (1H, m, H-2); 5,11 (2H, s, CH₂-Ph); 7,30-7,36 (5H, m, Ph).

Tổng hợp axit (S)-4-axetoxy-5-metoxy-5-oxo pentanoic (5)

Cho 3,24 g chất 4 (10,88 mmol) và 0,129 g (4 %) Pd/C vào trong bình phản ứng 2 cổ chứa 5 mL metanol rồi hút chân không, sau đó sục khí hydro ở nhiệt độ phòng trong 3 giờ. Dung dịch phản ứng được lọc bỏ chất xúc tác, rồi loại dung môi dưới áp suất giảm thu được cặn chất. Cặn chất được tinh chế trên cột sắc ký silica gel với hệ dung môi *n*-hexan/EtOAc = 50/50 thu được 2,2 g chất **5** dưới dạng chất dầu màu trắng. Hiệu suất phản ứng đạt 91 %.

¹H NMR (500 MHz, CDC1₃) δ (ppm): 2,11 (3H, s, OAc); 2,07-2,24 (2H, m, CH₂-3); 2,47 (2H, m, CH₂-4); 3,73 (3H, s, OCH₃); 5,04 (1H, dd, *J* = 4,5; 8,0 Hz, H-2).

Tổng hợp (S)-metyl 2-axetoxy-5hydroxypentanoat (6)

Dung dịch phản ứng gồm hợp chất 5 (2,2 g, 10,78 mmol) trong bình cầu chứa 3 ml THF khan được làm lạnh xuống 0 °C sau đó nhỏ từ từ (1,8 ml; 16,7 mmol) dung dịch BH₃.SMe₂ vào hỗn hợp phản ứng và khuấy ở nhiệt độ phòng trong 3 giờ. Sau khi kết thúc, phản ứng được thủy phân bằng dung dịch NaHCO₃ 10 % trong 15 phút, sau đó chiết phân bố với etyl axetat. Pha hữu cơ được làm khô qua Na₂SO₄, loại dung môi dưới áp suất giảm thu được cặn chất. Cặn chất được tinh chế trên cột silica gel với hệ dung môi *n*-hexan/EtOAc = 70/30 thu được sản phẩm 6 dưới dạng chất dầu màu trắng (1,45 g, hiệu suất 71 %).

¹H NMR (500 MHz, CDC1₃) δ (ppm): 1,63 (2H, m, CH₂-4); 1,83-1,97 (2H, m, CH₂-3); 2,10 (3H, s, OAc); 3,63 (2H, t, *J* = 6,0 Hz, CH₂-5); 3,71 (3H, s, OCH₃); 5,00 (1H, dd, *J* = 5,0; 8,0 Hz, H-2).

Tổng hợp (S)-metyl-2-axetoxy-5-(tosyloxy) pentanoat (7)

Hỗn hợp phản ứng gồm 1,4 g hợp chất **6** (7,36 mmol), 2,8 ml Et₃N (22,08 mmol) và 359 mg 4-DMAP (2,94 mmol) được cho vào bình cầu 100 ml, sau đó cho từ từ 1,82 g TsCl (11,04 mmol) vào bình phản ứng. Hỗn hợp phản ứng được khuấy ở nhiệt độ phòng trong vòng 4 giờ, quá trình phản ứng được theo dõi bằng sắc ký bản mỏng. Sau khi phản ứng kết thúc hỗn hợp phản ứng được cho thêm NaHCO₃ 5 %, sau đó chiết với dung môi CH₂Cl₂. Sản phẩm phản ứng được tinh chế bằng sắc ký cột với hệ dung môi *n*-hexan/EtOAc tỷ lệ 75/25 thu được sản phẩm 7 đưới dạng chất dầu màu trắng (1,72 g, hiệu suất 70 %).

¹H NMR (500 MHz, CDC1₃) δ (ppm): 1,79 (2H, m, CH₂-4); 1,91 (2H, m, CH₂-3); 2,11 (3H, s, OAc); 2,46 (3H, s, CH₃); 3,73 (3H, s, OCH₃); 4,05 (2H, m, CH₂-5); 4,95 (1H, m, H-2), 7,36 (2H, d, *J* = 8,0 Hz, H-2' và H-6'); 7,78 (2H, d, *J* = 8,0 Hz, H-3' và H-5').

Tổng hợp (S)-2-oxopiperidin-3-yl axetat (8)

Cho chất 7 (1,32 g; 3,83 mmol) và 5 ml DMF vào bình phản ứng, khuấy đều bằng khuấy từ, tiếp tục cho thêm 746 mg chất NaN₃ (11,49 mmol) vào bình phản ứng. Phản ứng được đun ở nhiệt độ 60 °C trong 3 giờ. Quá trình phản ứng được theo dõi bằng sắc ký bản mỏng. Sau khi phản ứng kết thúc, hòa tan sản phẩm bằng nước cất và chiết với etyl axetat. Pha hữu cơ được làm khô bằng Na₂SO₄ rồi loại dụng môi dưới áp suất giảm thu được cặn chất. Cặn chất được tinh chế nhanh trên cột sắc ký silica gel với hệ dụng môi *n*-hexan/EtOAc tỷ lệ 8/2 thu được sản phẩm trung gian (701 mg) và được sử dụng ngay cho phản ứng tiếp theo.

Hòa tan 701 mg (3,25 mmol) chất trung gian thu được từ phản ứng trên vào trong bình phản ứng chứa 2 ml MeOH, làm lạnh phản ứng xuống 0 °C, sau đó thêm 28 mg Pd/C 4 %, hút chân không và sục khí H_2 . Sau 1h phản ứng kết thúc. Lọc hút thu được 697 mg cặn chất. Tinh chế sản phẩm trên cột silica gel với hệ dung môi etyl axetat/MeOH tỷ lệ 95/5 thu được 443 mg sản phẩm **8**. Hiệu suất tổng qua 2 phản ứng 74 %.

 $[α]^{29}{}_D = -19^\circ$ (c 0,67, CH₃OH); ¹H-NMR (500 MHz, CDCl₃): δ (ppm) 1,77-1,92 (3H, m, CH₂-4 và H-5a); 2,09 (3H, s, OAc); 2,12 (1H, m, H-5b); 3,26 (2H, m, CH₂-6); 5,16 (1H, dd, J = 6,0; 9,0 Hz, H-3), 7,24 (1H, br s, NH). ¹³C-NMR (125 MHz, CDCl₃): δ (ppm) 20,2 (OCO<u>C</u>H₃); 20,8 (CH₂); 26,9 (CH₂); 41,7 CH₂); 68,6 (CH); 169,3 (C=O); 170,1 (C=O).

Tổng hợp *tert*-butyl 3-axetoxy-2-oxopiperidine-1cacboxylat (9)

Hòa tan 383 mg (2,44 mmol) chất **8** trong 0,2 ml CH₃CN sau đó thêm 89 mg DMAP (0,73 mmol) vào hỗn hợp phản ứng và khuẩy 10 phút ở nhiệt độ phòng, rồi thêm 0,84 ml Boc₂O (3,66 mmol). Hỗn hợp phản ứng được khuẩy ở nhiệt độ phòng trong 3 giờ. Sau khi phản ứng kết thúc, hỗn hợp phản ứng được cho thêm NaHCO₃ 5 %, sau đó chiết với dung môi etyl acetat (3 lần x 50 ml). Sản phẩm phản ứng được tinh chế bằng sắc ký cột với hệ dung môi *n*-hexan/EtOAc tỷ lệ 8/2 thu được 451 mg sản phẩm **9**. Hiệu suất phản ứng 72 %.

¹H-NMR (500 MHz, CDCl₃): δ (ppm) 1,51 (9H, s, 3 x CH₃); 1,87-1,98 (3H, m, CH₂-4 và H-5a); 2,15(3H, s, OAc); 2,21 (1H, m, H-5b); 3,62 (1H, m, H-6a); 3,78 (1H, m, H-6b); 5,29 (1H, dd, *J* = 7,5; 10,5 Hz, H-3). ¹³C-NMR (125 MHz, CDCl₃): δ (ppm) 20,3 (OCO<u>C</u>H₃); 20,8 (CH₂); 26,9 (CH₂); 27,9 (3 x CH₃); 44,8 CH₂); 69,9 (CH); 83,5 (C); 152,5 (C=O); 167,9 (C=O); 170,0 (C=O).

Tổng hợp (2S)-tert-butyl-3-axetoxy-2-allyl piperidin-1-cacboxylat (10)

Cho 451 mg chất **9** (1,75 mmol) và 0,8 ml MeOH vào trong bình cầu rồi làm lạnh ở 0 °C bằng đá muối. Sau đó thêm từ từ (110 mg, 2,62) NaBH₄ vào hỗn hợp phản ứng. Sau 3h dừng phản ứng, thêm NaHCO₃ 5 % và chiết với CH_2Cl_2 (3 lần). Tinh chế sản phẩm thu được 385 mg sản phẩm. Sản phẩm này được sử dụng luôn cho phản ứng tiếp theo.

Cho 0,5 ml CH₂Cl₂ vào trong bình cầu chứa 385 mg sản phẩm (1,48 mmol) thu được ở trên rồi làm lạnh ở 0 °C. Sau đó cho lần lượt 0,68 ml TEA (4,44 mmol), 90 mg DMAP (0,74 mmol) và 0,22 ml Ac₂O (2,96 mmol) vào hỗn hợp phản ứng. Hỗn hợp phản ứng được khuấy ở 0 °C trong 3 giờ, rồi thêm dung dịch NaHCO₃ 5 %, chiết với CH₂Cl₂ (3 lần) thu được 346 mg chất.

Hòa tan 346 mg (1,14 mmol) hợp chất thu được ở trên trong 1ml CH_2Cl_2 , rồi làm lạnh ở -78 °C, sau đó thêm từ từ 0,25 ml (1,71 mmol) allytrimetyl silan và 0,05 ml BF₃.Et₂O (0,57 mmol). Hỗn hợp phản ứng được duy trì ở -78 °C trong 2 giờ. Thêm 20 ml dung dịch NaHCO₃ 5 %, chiết với CH_2Cl_2 (3 lần). Tinh chế sản phẩm trên cột silica gel với hệ dung môi *n*-hexan/etyl axetat tỷ lệ 9/1 cho 112 mg sản phẩm **10**. Hiệu suất tổng qua 3 phản ứng 31,5 %.

¹H-NMR (500 MHz, CDCl₃): δ (ppm) 1,43 (9H, s, 3 x CH₃); 1,50-1,86 (4H, m, CH₂-4 và CH₂-5); 2,05 (3H, s, OAc); 2,29 (1H, m, H-1'a); 2,39 (1H, m, H-1'b); 2,68 (1H, m, H-6a); 3,96 (1H, m, H-6b); 4,48 (1H, m, H-2); 4,84 (1H, m, H-3); 5,00 (1H, br d, *J* = 17,0 Hz, H-3'a); 5,06 (1H, dd, *J* = 17,0; 10,0 Hz, H-3'b); 5,72 (1H, m, H-2'); ¹³C-NMR (125 MHz, CDCl₃): δ (ppm) 21,2 (OCO<u>C</u>H₃); 23,9 (CH₂); 24,6 (CH₂); 28,4 (3 x CH₃); 29,3 (CH₂); 37,0 (CH₂); 53,4 (CH); 70,9 (CH); 79,8 (C); 116,9 (CH₂); 134,7 (CH); 154,9 (C=O); 170,0 (C=O).

Tổng họp (2*S*,3*R*)-tert-butyl 3-axetoxy-2-(oxiran-2-ylmetyl)piperidin-1-cacboxylat (11)

Cho 476 mg (1,99 mmol) chất **10** và 3 ml CHCl₃ vào trong bình cầu, rồi cho thêm 440 mg mCPBA (2,59 mmol) vào bình phản ứng. Hỗn hợp phản ứng được khuấy trong 10 giờ. Sau khi phản ứng kết thúc, chiết phản ứng với NaHCO₃ 10 %, chiết với CH₂Cl₂ (3 lần). Tinh chế sản phẩm trên cột silica gel với hệ dung môi *n*-hexan/etyl axetat tỷ lệ 75/25, thu được 221 mg chất **11**. Hiệu suất phản ứng 70,5 %.

¹H-NMR (500 MHz, CDCl₃): δ (ppm) 1,45 (9H, s, 3 x CH₃); 1,49-1,90 (6H, m, CH₂-4, CH₂-5 và CH₂-1'); 2,05 (3H, s, OAc); 2,47 (1H, m, H-3'a); 2,75 (1H, m, H-3'b); 2,94 (1H, m, H-2'); 4,01 (2H, m, CH₂-6); 4,54 (1H, m, H-2); 4,76 (1H, m, H-3); ¹³C-NMR (125 MHz, CDCl₃): δ (ppm) 19,5 (CH₂); 20,9 (OCO<u>C</u>H₃); 23,6 (CH₂); 23,7 (CH₂); 28,2 (3 x CH₃); 31,8 (CH₂); 46,2 (CH₂); 49,6 (CH); 49,7 (CH); 69,7 (CH); 79,6 (C); 155,1 (C=O); 170,2 (C=O).

Tổng hợp (2*S*,3*R*)-tert-butyl 3-axetoxy-2-(2-oxo-3-(4-oxoquinazolin-3(4H)-yl)propyl)piperidin-1cacboxylat (12)

Nhỏ 1,5 ml EtOH vào bình phản ứng chứa chất 11 (60 mg; 0,2 mmol) và 4-hydroxyquinazolin (73 mg; 0,5 mmol), sau đó thêm tiếp 0,15 ml TEA (0,48 mmol) vào hỗn hợp phản ứng. Phản ứng được đun ở 60°C trong 12h. Hỗn hợp sau phản ứng được xử lý bằng cách tinh chế trên cột sephadex thu 47 mg sản phẩm.

47 mg sản phẩm của phản ứng trên được hòa tan trong CHCl₃ sau đó cho thêm vào hỗn hợp phản ứng 127 mg DMP, phản ứng kết thúc sau 6 giờ. Hỗn hợp phản ứng được tinh chế trên cột silica gel với hệ dung môi CH₂Cl₂/EtOAc thu được 22 mg hợp chất **12**. Hiệu suất tổng qua 2 phản ứng đạt 25 %.

¹H-NMR (500 MHz, CDCl₃): δ (ppm) 1,45 (9H, s, 3 x CH₃); 1,49-1,85 (4H, m, CH₂-4''và CH₂-5''); 2,07 (3H, s, OAc); 2,82 (2H, m, CH₂-3'); 2,93 (1H, m, H-6''a); 3,71 (1H, m, H-2''); 3,95 (1H, m, H-6''b); 4,86 (2H, s, CH₂-1'); 4,95 (1H, m, H-3''); 7,49 (1H, t, *J* = 7,5 Hz, H-6); 7,74 (2H, m, H-7 và H-8); 7,98 (1H, s, H-2); 8,27 (d, *J* = 7,5; 0,5 Hz, H-5); ¹³C-NMR (125 MHz, CDCl₃): δ (ppm) 19,5 (CH₂); 21,1 (OCO<u>C</u>H₃); 23,8 (CH₂); 28,4 (3 x CH₃); 40,7 (CH₂); 50,9 (CH); 53,6 (CH₂); 69,4 (CH); 121,9 (C); 126,7 (CH); 127,2 (CH); 127,6 (CH); 134,3 (CH); 148,3 (CH); 160,9 (C=O); 170,4 (C=O); 199,3 (C=O).

Tổng hợp febrifugine hydrochlorid (13)

Hợp chất **12** (22 mg, 0,05 mmol) được hòa tan trong 1 ml MeOH và 0,2 ml H₂O, rồi cho thêm 16 mg Na₂CO₃ (0,15 mmol). Hỗn hợp phản ứng được khuấy trong 1 giờ, sau đó quay khô để loại bỏ MeOH và cho thêm nước, chiết với CH_2Cl_2 thu được 18 mg sản phẩm dưới dạng chất rắn màu trắng.

Cho 1 ml CHCl₃ vào trong bình cầu chứa sản phẩm thu được từ phản ứng trên (18 mg) làm lạnh xuống 0 °C và thêm vào đó 0,02 ml TFA. Hỗn hợp phản ứng được khuấy ở 0 °C trong 10 phút, sau đó đưa lên nhiệt độ phòng, trong 3 giờ. Hỗn hợp phản ứng sau đó được trung hòa bằng NaHCO₃ và chiết với CH₂Cl₂ (5 lần), cô khô và tinh chế trên cột silica với hệ dung môi CH₂Cl₂/MeOH = 9/1 thu được 13 mg sản phẩm febrifugine.

Cho 13 mg chất febrifugine thu được ở trên hòa tan trong 1 ml CHCl₃, làm lạnh xuống 0 °C, sau đó cho vào hỗn hợp phản ứng 0,1 ml HCl_d. Hỗn hợp phản ứng được khuấy trong 4 giờ. Dừng phản ứng,

cô khô sản phẩm thu được 16 mg chất **13**. Hiệu suất tổng qua 3 phản ứng đạt 85 %.

 $[\alpha]_{D}^{29} = +5.7^{\circ}$ (c 0.65, CH₃OH); ESI-MS [M-2HCl+H]⁺ *m*/*z* 302; ¹H-NMR (500 MHz, CD₃OD): δ (ppm) 1,64 (1H, m, H-4a''); 1,84 (1H, m, H-5a''); 2,03 (1H, m, H-5b"); 2,14 (1H, m, H-4"b); 3,05 (1H, dt, J = 13,0; 3,0 Hz, H-6''a); 3,19 (1H, dd, J = 17,0; 6,5 Hz, H-3'a); 3,37 (1H, m, H-6''b); 3,48 (1H, dd, J = 17,0; 4,5 Hz, H-3'b); 3,53 (1H, m, H-2''); 3,74 (1H, dt, *J* = 9,5; 4,0 Hz, H-3''); 5,34 (2H, s, CH₂-1'); 7,80 (1H, t, J = 8, 0 Hz, H-6); 7,86 (1H, d, J = 8, 0 Hz, H-8); 8,08 (1H, dt, J = 8,0; 0,5 Hz, H-5); 8,35 (1H, dd, J = 8,0; 0,5 Hz, H-7); 9,27 (1H, s, H-2); ¹³C-NMR (125 MHz, CD₃OD): δ (ppm) 21,5 (C-5''); 31,7 (C-4''); 40,2 (C-3'); 44,9 (C-6''); 56,4 (C-1'); 58,1 (C-2''); 68,3 (C-3''); 121,5 (C-4a); 123,1 (C-8); 128,6 (C-7); 130,7 (C-6); 137,6 (C-5); 141,4 (C-8a); 151,9 (C-2); 159,9 (C-4); 201,1 (C-2').

3. KẾT QUẢ VÀ THẢO LUẬN

Sån phẩm febrifugine hydrochlorid (13) được chúng tôi tổng hợp từ axit L-glutamic qua 19 bước. Đầu tiên cho chất 1 tác dụng với benzyl ancol với sự có măt của axit metansulfonic thu được axit Lbenzyl glutamic (2) với hiệu suất là 61 %. Nhóm NH₂ của chất **2** được chuyển hóa thành nhóm OH bằng phản ứng với NaNO2 trong hỗn hợp AcOH/H₂O và nhóm OH của axit cacboxylic được metyl hóa chọn lọc nhóm bằng MeI với sự có mặt của NaHCO₃ cho chất **3**, với hiệu suất tổng hai phản ứng đat 70,2%. Cho chất **3** tác dung với Ac₂O với sư có mặt của pyridin thu được chất 4 với hiệu suất là 90 %. Khử hóa loại nhóm benzyl hợp chất 4 bằng phản ứng hydro hoá với xúc tác Pd/C trong MeOH cho chất 5 với hiệu suất là 91 %. Nhóm axit cacboxylic của chất 5 được khử hóa bằng BH₃.SMe₂ cho ancol 6 với hiệu suất của phản ứng đạt 71 %. Cho chất 6 tác dung với TsCl với sư có mặt của Et₃N thu được chất 7 với hiệu suất là 70 %. Thực hiện phản ứng azit hoá chất 7 với NaN₃ tạo chất azit rồi hydro hoá tạo vòng lactam bằng tác nhân khử hoá Pd/C cho chất 8 với hiệu suất tổng qua 2 phản ứng là 74 %. Bảo vệ nhóm NH bằng tác nhân Boc₂ cho sản phẩm 9 với hiệu suất là 72 %. Sản phẩm allyl 10 thu được từ chất 9 qua 3 bước, đầu tiên là khử hóa nhóm cacbonyl bằng tác nhân NaBH₄, sau đó axetyl hoá bằng tác nhân Ac₂O, rồi cho tác dụng với tác nhân allytrimetyl Silan với sự có mặt của axit Lewis cho sản phẩm 10 với hiệu suất tổng qua 3 phản ứng là 31,5 %. Oxi hoá nhóm anken bằng 1,3 đương lượng tác nhân mCPBA cho sản phẩm epoxy 11 với hiệu suất của phản ứng là 70,5 %. Hợp chất 12 thu được từ epoxy 11 qua 2 bước, đầu tiên là phản ứng cộng hợp với 4-hydroxyquinazolin, sau đó oxi hóa bằng tác nhân Dess-Martin periodinane, với hiệu suất tổng qua 2 phản ứng là 25 %. Loại nhóm bảo vệ axetat bằng Na₂CO₃ và nhóm Boc bằng axit TFA rồi tạo

muối với axit HCl đặc cho sản phẩm febrifugine hydrochloride (13) qua 3 phản ứng là 85 %.

Hình 1: Quy trình tổng hợp chất febrifugine hydrochloride (13)

Các hợp chất thu được trong quá trình phản ứng được xác định cấu trúc bằng phương pháp phố khôi lượng, phổ công hưởng từ hat nhân 1 và 2 chiều (xem chi tiết trong phần thực nghiệm). Cấu hình của các hợp chất trung gian được xác định bằng các phương pháp phố và so sánh $[\alpha]_D$ với tài liệu tham khảo. Hợp chất 13 thu được dưới dạng chất rắn màu trắng $[\alpha]^{29}_{D} = +5,7^{\circ}$. Phổ ¹³C-NMR của **13** cho tín hiệu của 16 nguyên tử cacbon trong đó có 2 nhóm cacbonyl ở δ_C 201,1 (C-2'), 159,9 (C-4), 1 nhóm metin gắn với oxi ở $\delta_{\rm C}$ 68,3 (C-3), 5 nhóm metin sp², 5 nhóm metylen, 1 nhóm metin sp³ và 2 cacbon bậc 4. Trên phổ ¹H-NMR, ở phía trường thấp thấy xuất hiện tín hiệu của 4 proton vòng thơm tương tác dạng ortho-disubstituted của vòng benzen ở $\delta_{\rm H}$ 7,80 (1H. t, J = 8,0 Hz, H-6), 7,86 (1H, d, J = 8,0 Hz, H-8), 8,08 (1H, dt, J = 8,0; 0,5 Hz, H-5), 8,35 (1H, dd, J = 8,0; 0,5 Hz, H-7). Tín hiệu của 1 nhóm metin và 1 nhóm metylen liên kết với nitơ về phía trường thấp ở 9,27 (1H, s, H-2), 5,34 (2H, s, CH₂-1') và tín hiệu của 1 nhóm metin gắn với oxy ở 3,74 (1H, dt, J =9,5; 4,0 Hz, H-3'') cũng được quan sát thấy trên phổ ¹H-NMR. Trên phổ ¹H-NMR cũng cho tín hiệu của 8 proton nằm trong khoảng $\delta_{\rm H}$ 1,60-3,63. Phổ HSQC cho phép xác định được 8 proton này thuộc về 4 nhóm metylen. Kết hợp các dữ liệu phổ ¹H-NMR, ¹³C-NMR, COSY, HSQC, HMBC, MS cho phép xác định chất **13** là febrifugine hydroclorid.

Lời cảm ơn: Công trình này được thực hiện trong khuôn khổ Nghị định thư cấp Nhà nước với Cộng hoà Pháp do Bộ KH&CN cấp kinh phí "Nghiên cứu ứng dụng các chất lỏng ion bất đối xứng để tổng TCHH, T. 52(4), 2014

hợp febrifugine và các dẫn xuất. Khảo sát hoạt tính sinh học của chúng".

TÀI LIỆU THAM KHẢO

- C. S. Jang, F. Y. Fu, C. Y. Wang, K. C. Huang, G. Lu and T. C. Chou. *A Chinese Antimalarial Herb*, *Science*, 103, 59-60 (1946)
- J. B. Koepfli, J. F. Mead, Jr. J. A. Brockman. An alkaloid with high antimalarial activity from Dichroa Febrifuga, J. Am. Chem. Soc., 69, 1837-1838 (1947).
- B. R. Baker, F. J. McEvoy, R. E. Schaub, J. P. Joseph, J. H. Williams. An antimalarial alkaloid from hydrangea. XXI. Synthesis and structure of febrifugine and isofebrifugin, J. Org. Chem., 18, 178-180 (1953).
- L. E. Burgess, E. K. M. Gross, J. Jurka. The preparation of α-substituted, β-hydroxy piperidines and pyrrolidines: The total synthesis of febrifugine, Tetrahedron Lett., 37, 3255-3258 (1996).
- S. Kobayashi, M. Ueno, R. Suzuki, H. Ishitani. *Catalytic asymmetric synthesis of febrifugine and isofebrifugine*, Tetrahedron Lett., 40, 2175-2178 (1999).

Liên hệ: Đoàn Thị Mai Hương

Viện Hóa sinh biển Viện Hàn lâm Khoa học và Công nghệ Việt Nam 18, Hoàng Quốc Việt, Quận Cầu Giấy, Hà Nội Email: doanhuong7@yahoo.com.

- Ru-Cheng Liu, Wei Huang, Jing-Yi Ma, Bang-Guo Wei, Guo-Qiang Lin. BF₃·Et₂O catalyzed diastereoselective nucleophilic reactions of 3-silyloxypiperidine N,O-acetal with silyl enol ether and application to the asymmetric synthesis of (+)-febrifugine, Tetrahedron Letters, 50, 4046–4049 (2009).
- Pei-Qiang Huang, Bang-Guo Wei, Yuan-Ping Ruan, Asymmetric Synthesis of Antimalarial Alkaloids (+)-Febrifugine and (+)-Isofebrifugine, Synlett, 11, 1663-1667 (2003).
- 8. Yasuo Takeuchi, Midori Koike, Kumiko Azuma, Hiromi Nishioka, Hitoshi ABE. *Synthesis and antimalarial activity of febrifugine derivative*, Chem. Pharm. Bull., **49**, 721-725 (2001).
- E. Burgess, E. K. M. Gross Joe Jurka, *The preparation of α-substituted, β-hydroxy piperidines and pyrrolidines: The total synthesis of febrifugine*, J. Tetrahedron Lett., **37**, 3255-3259 (1996).
- 10. Phí Thị Đào, Đoàn Thị Mai Hương, Phạm Văn Cường, Nguyễn Văn Hùng, Nguyễn Thuỳ Linh, Lê Nguyễn Thành, Vo Thanh Giang, Châu Văn Minh. Tổng hợp (S)-Methyl 2-((tert-butyldimethylsilyl)oxy)-5-(tosyloxy)pentanoate, Tạp chí KH&CN, đã chấp nhận đăng (2013).