CEMBRANOID CONSTITUENTS FROM LOBOPHYTUM CRASSUM

Nguyen Xuan Cuong¹, Nguyen Phuong Thao¹, Dinh Thi Thu Thuy¹, Ninh Thi Ngoc¹, Nguyen Van Thanh¹, Nguyen Hoai Nam¹, Young Ho Kim², Phan Van Kiem¹, and Chau Van Minh^{1*}

¹Institute of Marine Biochemistry, Vietnam Academy of Science and Technology

²College of Pharmacy, Chungnam National University, Korea

Received 23 January 2015; Accepted for Publication 18 March 2015

Abstract

Five cembranoids, 2,16:7*S*,8*S*-diepoxy-1,3,11,15-cembratetraene (1), 7*S*,8*S*-epoxy-1,3,11-cembratriene-16-oic acid methyl ester (2), (1R,4R,2E,7E,11E)-cembra-2,7,11-triene-4-ol (3), (2S,7S,8S)-sarcophine (4), and (2S,7S,8S)-sarcophytoxide (5), were isolated from the methanol extract of the soft coral *Lobophytum crassum* by using various chromatographic methods. Their structures were elucidated by 1D and 2D-NMR experiments and comparison of their NMR data with reported values. Compounds 1 and 3 were isolated from *L. crassum* for the first time.

Keywords. Lobophytum crassum, Alcyoniidae, soft coral, cembranoid.

1. INTRODUCTION

Soft corals are marine invertebrates of the order Alcyonacea, subclass Octocorallia, class Anthozoa, and phylum Cnidaria. These marine invertebrates are a rich source of secondary metabolites, especially diterpenoids and hydroxylated sterols [1]. As part of our ongoing investigations to find bioactive compounds from Vietnamese marine invertebrates, we have reported eight new cembranoids from the soft coral Lobophytum crassum [2, 3]. The current paper deals with the isolation and structural identification of five cembranoids including 2,16:7*S*,8*S*-diepoxy-1,3,11,15-cembratetraene (1),7S,8S-epoxy-1,3,11-cembratriene-16-oic acid methyl ester (2), (1R,4R,2E,7E,11E)-cembra-2,7,11-trien-4ol (3), (2S,7S,8S)-sarcophine (4), and (2S,7S,8S)sarcophytoxide (5) from this soft coral.

2. EXPERIMENTAL

2.1. General experimental procedures

The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were recorded on a Bruker AM500 FT-NMR spectrometer, TMS was used as an internal standard. The electrospray ionization mass spectra (ESI-MS) were obtained on an Agilent 1260 series single quadrupole LC/MS system. Column chromatography (CC) was performed on silica gel (Kieselgel 60, 70–230 mesh and 230–400 mesh, Merck) and YMC RP-18 resins (30–50 µm, Fuji

Silysia Chemical Ltd.). Thin layer chromatography (TLC) used pre-coated silica gel 60 F_{254} (1.05554.0001, Merck) and RP-18 F_{254S} plates (1.15685.0001, Merck). Compounds were visualized by spraying with aqueous 10 % H_2SO_4 and heating for 3–5 minutes.

2.2. Marine materials

The specimens of *Lobophytum crassum* were collected in Conco, Quang Tri, Vietnam, during May 2013 and deep frozen until used. The sample was identified by Professor Do Cong Thung (Institute of Marine Environment and Resources). A voucher of specimen (No. LC0513) was deposited at the Institute of Marine Biochemistry and the Institute of Marine Resources and Environment, VAST, Vietnam.

2.3. Isolation

Freeze-dried bodies of the soft coral *L. crassum* (1.0 kg) were well chopped and extracted three times with hot MeOH (at 50 °C for 5 h each time). The obtained solutions were filtered, combined, and concentrated under reduced pressure to yield a dark brown viscous residue (75.0 g, M). This residue was suspended in water (1 L) and partitioned with *n*-hexane and CH₂Cl₂ (3 × 3 L). The combined *n*-hexane soluble portions were evaporated under reduced pressure to afford a *n*-hexane fraction (36.2 g, H). Fraction H was crudely separated on silica gel column chromatography (CC) with gradient

concentrations of ethyl acetate in *n*-hexane from 0 to 100% as eluent to yield six fractions, H-1 to H-6. Fraction H2 (1.5 g) was further separated on silica gel CC using n-hexane/EtOAc (25/1) as eluent, to give three sub-fractions, H-2.1 to H-2.3. Subfraction H-2.1 (0.3 g) was then separated on silica gel CC with eluent of *n*-hexane/acetone (30/1) and further purified by YMC RP-18 CC eluting with MeOH/acetone/H₂O (9/1/1) to afford 1 (6.8 mg). Compound 5 (8.2 mg) was purified from subfraction H-2.3 (0.8 g) using silica gel CC with nhexane/EtOAc (20/1) as eluent. Fraction H-4 (2.5 g) was separated on YMC RP-18 CC with eluent of MeOH/acetone/H₂O (95/2/3) to vield four subfractions, H-4.1 to H-4.4. Subfraction H-4.1 (0.8 g) was further separated on YMC RP-18 CC, eluting with MeOH/H₂O (8/1) to yield 4 (9.8 mg). Subfraction H-4.2 (0.5 g) was separated into four smaller fractions, H-4.2a to H-4.2d, using YMC RP-18 CC with acetone/water (85/15) as eluent. Subfraction H-4.2a (0.17 g) afforded compound 3 (9.8 mg) and 2 (10.4 mg), after subjecting it to silica gel CC with eluent of dichloromethane/acetone (35/1).

2,16:7*S*,8*S*-diepoxy-1,3,11,15-cembratetraene (**1**): Colorless oil; $[\alpha]_D$ + 35 (*c* 0.1, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see table 1; ESI-MS m/z 323 [M+Na]⁺ (C₂₀H₂₈O₂, M = 300).

7*S*,8*S*-epoxy-1,3,11-cembratriene-16-oic acid methyl ester (**2**): Colorless oil; $[\alpha]_D$ +15 (*c* 0.1, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see Table 1; ESI-MS *m*/*z* 355 [M+Na]⁺ (C₂₁H₃₂O₃, M = 332).

(1R,4R,2E,7E,11E)-cembra-2,7,11-triene-4-ol (3): Colorless oil; $[\alpha]_D$ –70 (*c* 0.1, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see table 1; ESI-MS *m*/*z* 313 [M+Na]⁺ (C₂₀H₃₄O, M = 290).

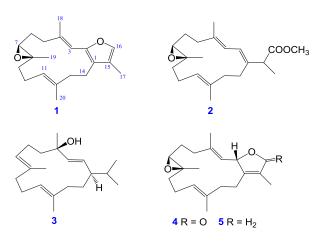


Figure 1: Chemical structures of compounds 1–5

Table 1: ¹ H-NMR (500 MHz) and	¹³ C-NMR (125 MHz) data of $1-3$ and rep	ported compounds
---	---	------------------

С	1 ^a		^b δ _C		2 ^a	°δ _C	3 ^a	
	$\delta_{\rm C}$	$\delta_{\rm H}$ mult. (<i>J</i> = Hz)	Ο _C	$\delta_{\rm C}$	$\delta_{\rm H}$ mult. (<i>J</i> = Hz)	υ _C	$\delta_{\rm C}$	$\delta_{\rm H}$ mult. (<i>J</i> = Hz)
1	122.04	-	139.7	139.62	-	46.3	46.14	1.63 m
2	149.50	-	122.9	122.82	6.19 d (11.0)	127.3	126.99	5.27 dd (9.0, 15.5)
3	113.46	5.91 d (1.0)	121.0	120.93	5.96 dd (11.0, 1.0)	138.8	138.78	5.55 d (15.5)
4	133.93	-	136.6	136.54	-	73.7	73.80	-
5	36.99	2.31 m	35.9	35.82	2.27 m	44.1	44.04	1.60 m/1.88 m
6	25.58	1.75 m/1.81 m	25.7	25.61	1.71 m/1.80 m	23.6	23.48	2.08 m/2.33 m
7	60.47	2.88 dd (5.5, 6.5)	61.3	61.21	2.83 t (5.5)	127.7	127.79	5.20 t (7.0)
8	60.39	-	60.0	60.00	-	132.8	132.83	-
9	36.20	1.75 m/1.81 m	36.9	37.20	1.59 m/1.89 m	39.1	39.01	2.07 m/2.13 m
10	21.76	1.92 m	22.3	22.28	2.00 m	23.9	23.68	2.08 m/2.33 m
11	126.47	5.03 dt (6.5, 1.0)	126.1	126.04	5.07 dt (6.5, 1.0)	124.9	124.83	5.03 dt (6.5, 1.0)
12	134.60	-	135.3	135.23	-	132.5	132.57	-
13	38.34	2.13 m/2.20 m	38.2	38.46	2.00 m/2.23 m	37.0	36.86	2.02 m
14	22.78	2.47 m/2.56 m	29.0	28.94	2.33 m	28.2	27.95	1.28 m/1.61 m
15	120.53	-	46.3	46.24	3.20 d (7.5)		33.00	1.50 m
16	137.40	7.12 br s	175.3	175.24	-	19.4	19.34	0.81 d (7.0)
17	8.21	1.97 d (1.5)	16.8	16.73	1.31 d (7.5)	20.6	20.65	0.84 d (7.0)
18	18.12	2.03 br s	17.2	17.21	1.77 br s	29.4	29.30	1.26 s
19	18.72	1.27 s	18.1	18.03	1.26 s	15.2	15.11	1.58 s
20	17.49	1.42 br s	17.1	17.01	1.58 br s	14.9	14.79	1.52 s
OMe			51.8	51.77	3.67 s			

^arecorded in CDCl₃, ^b δ_{C} of 7*S*,8*S*-epoxy-1,3,11-cembratriene-16-oic acid methyl ester [4],

 $^{c}\delta_{C}$ of (1*R*,4*R*,2*E*,7*E*,11*E*)-cembra-2,7,11-trien-4-ol [5].

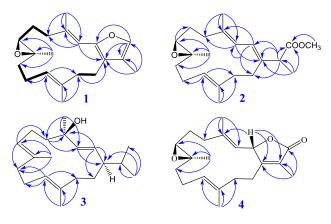
С	as	4 ^b		62	5 ^b		
	${}^{a}\delta_{C}$	$\delta_{\rm C}$	$\delta_{\rm C}$ mult. ($J = {\rm Hz}$)	°δ _C	δ_{C}	$\delta_{\rm C}$ mult. ($J = {\rm Hz}$)	HMBC (H \rightarrow C)
1	162.2	162.14	-	133.2	133.21	-	
2	78.8	78.66	5.57 dd (1.5, 10.0)	83.6	83.64	5.54 d (10.0)	
3	120.6	120.50	5.03 dd (1.5, 10.0)	126.2	126.26	5.23 d (10.0)	1, 5, 18
4	144.0	143.87	-	138.9	139.21	-	
5	37.4	37.24	2.38 m	37.5	37.61	2.35 m	
6	25.2	25.12	1.90 m/1.68 m	25.2	25.27	1.65 m/1.92 m	
7	61.5	61.25	2.68 t (4.5)	61.7	61.78	2.71 t (4.0)	
8	59.9	59.76	-	59.6	59.81	-	
9	39.0	38.85	1.10 dt (3.0, 13.0)	39.6	39.76	1.01 dt (13.0, 3.0)	8, 10, 11, 19
			2.11 m			3.13 m	
10	23.3	23.17	2.27 m/1.93 m	23.4	23.49	1.90 m/2.27 m	
11	124.9	124.82	5.14 dd (5.5, 9.0)	123.6	123.60	5.10 dd (5.5, 10.0)	10, 13, 20
12	135.5	135.37	-	136.5	136.77	-	
13	36.4	36.20	2.20 m/2.03 m	36.5	36.63	1.83 m	
14	27.5	27.40	2.75 m/2.10 m	25.9	26.06	1.68 m/2.56 m	1, 2, 13, 15
15	122.9	122.75	-	127.7	127.82	-	
16	175.0	174.51	-	78.2	78.34	4.50 m	1, 15
17	8.9	8.86	1.85 t (1.5)	10.0	10.13	1.65 s	1, 15, 16
18	16.1	16.00	1.90 s (1.0)	15.4	15.54	1.82 s	3, 4, 5
19	17.7	17.05	1.28 s	16.8	16.88	1.27 s	7, 8, 9
20	15.5	15.32	1.62 s	15.0	15.05	1.60 s	11, 12, 13

Table 2: ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) data of 4, 5, and reported compounds

^a $\delta_{\rm C}$ of (2*S*,7*S*,8*S*)-sarcophine [6], ^brecorded in CDCl₃, ^c $\delta_{\rm C}$ of (2*S*,7*S*,8*S*)-sarcophytoxide [7].

(2S,7S,8S)-sarcophine (4): Colorless oil; $[\alpha]_D$ +90 (*c* 0.1, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see table 2; ESI-MS *m*/*z* 339 [M+Na]⁺ (C₂₀H₂₈O₃, M = 316).

(2S,7S,8S)-sarcophytoxide (**5**): Colorless solid; [α]_D +130 (*c* 0.1, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see Table 2; ESI-MS *m*/*z* 325 [M+Na]⁺ (C₂₀H₃₀O₂, M = 302).


3. RESULTS AND DISCUSSION

Compound 1 was obtained as a colorless oil. Its NMR features indicated a cembranoid, one main constituent of soft corals. The ¹H-NMR spectrum exhibited typical signals of three olefinic [$\delta_{\rm H}$ 5.91 (1H, d, J = 1.0 Hz, H-3), 5.03 (1H, dt, J = 6.5, 1.0 Hz, H-11), and 7.12 (1H, br s, H-16)] and four tertiary methyl groups [$\delta_{\rm H}$ 1.97 (3H, d, J = 1.5 Hz, H-17), 2.03 (3H, br s, H-18), 1.27 (3H, s, H-19), and 1.42 (3H, br s, H-20)]. Moreover, the presence of one epoxy group was determine by signals at $\delta_{\rm C}$ 60.47 (d, C-7)/ $\delta_{\rm H}$ 2.88 (1H, dd, J = 5.5, 6.5 Hz, H-7) and $\delta_{\rm C}$ 60.39 (s, C-8). The ¹H-¹H correlation spectroscopy (COSY) led to assignment of the following connectivities: H-5/H-6/H-7, H-9/H-10/H-11, and H-13/H-14. The COSY evidence and the HMBC crosspeaks of H-3 ($\delta_{\rm H}$ 5.91) with C-1 ($\delta_{\rm C}$ 122.04)/C-4 ($\delta_{\rm C}$ 133.93)/C-5 ($\delta_{\rm C}$ 36.99), H-16 ($\delta_{\rm H}$ 7.12) with C-1 ($\delta_{\rm C}$ 122.04)/C-2 ($\delta_{\rm C}$ 149.50)/C-15 ($\delta_{\rm C}$ 120.53), H-17 ($\delta_{\rm H}$ 1.97) with C-1 ($\delta_{\rm C}$ 122.04)/C-15 ($\delta_{\rm C}$ 120.53)/C-16 ($\delta_{\rm C}$ 137.40), H-18 ($\delta_{\rm H}$ 2.03) with C-3 ($\delta_{\rm C}$ 113.46)/C-4 ($\delta_{\rm C}$ 133.93)/C-5 ($\delta_{\rm C}$ 36.99), H-19 ($\delta_{\rm H}$ 1.27) with C-7 ($\delta_{\rm C}$ 60.47)/C-8 ($\delta_{\rm C}$ 60.39)/C-9 ($\delta_{\rm C}$ 36.20), and those of H-20 ($\delta_{\rm H}$ 1.42) with C-11 ($\delta_{\rm C}$ 126.47)/C-12 ($\delta_{\rm C}$ 134.36)/C-13 ($\delta_{\rm C}$ 38.34), confirmed the structure of compound **1** as 2.16: 7*S*,8*S*-diepoxy-1,3,11,15-cembratetraene. This compound was previously isolated from a *Sarcophyton* soft coral [7]. However, this is the first report of this compound from *L*. *crassum* and the ¹³C-NMR data of **1** were reported here for the first time.

The NMR data of **2** were similar to those of **1** indicating that this compound is also a cembranoid. The easily visible difference of the NMR data between these two compounds is the additional presence of a methoxy group [δ_C 51.77/ δ_H 3.67 (3H, s)] and replacement of a carbonyl [δ_C 175.24 (C-16)], a methine [δ_C 46.24 (C-15)/ δ_H 3.20 (1H, d, J = 7.5 Hz, H-15)] and a secondary methyl groups [δ_C 16.73 (C-17)/ δ_H 1.31 (3H, d, J = 7.5 Hz, H-17)] in **2** for a fully substituted double bond and a tertiary

VJC, Vol. 53(2e), 2015

methyl group in **1**. From the above evidence, the ¹³C-NMR data of **2** were compared to those of 7*S*,8*S*-epoxy-1,3,11-cembratriene-16-oic acid methyl ester [4] and found to match (table 1). The structure of **2** was further confirmed by HMBC experiment (figure 2). This compound was previously isolated from *L. crassum* [4] demonstrating our taxonomic identification.

Figure 2: Key COSY (---) and HMBC (\rightarrow) correlations of 1-4

The other compounds were elucidated as (1R,4R,2E,7E,11E)-cembra-2,7,11-triene-4-ol (3) [8], (2S,7S,8S)-sarcophine (4) [6], and (2S,7S,8S)-sarcophytoxide (5) [7] by agreement of their ¹³C-NMR data with the reported values and combination with 2D-NMR data (tables 1 and 2).

4. CONCLUSION

Using combined chromatographic methods, five including 2,16:7S,8S-diepoxycembranoids 1,3,11,15-cembratetraene (1), 7S,8S-epoxy-1,3,11cembratriene-16-oic acid methyl ester (2),(1R,4R,2E,7E,11E)-cembra-2,7,11-triene-4-ol (3), (2S,7S,8S)-sarcophine (4). (2S, 7S, 8S)and sarcophytoxide (5) were isolated from the methanol extract of the soft coral Lobophytum crassum. Their structures were elucidated by 1D and 2D-NMR experiment. This is the first report of the 13 C-NMR data of **1** and compounds **1** and **3** were firstly isolated from *L. crassum*.

Acknowledgement. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.01-2012.37.

REFERENCES

- J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. G. Munro, M. R. Prinsep. *Marine natural products*, Nat. Prod. Rep., **31(2)**, 160-258 (2014).
- N. X. Cuong, N. P. Thao, B. T. Luyen, N. T. Ngan, D. T. Thuy, S. B. Song, N. H. Nam, P. V. Kiem, Y. H. Kim, C. V. Minh. *Cembranoid diterpenes from the* soft coral Lobophytum crassum and their antiinflammatory activities, Chem. Pharm. Bull., 62(2), 203-208 (2014).
- N. P. Thao, B. T. Luyen, N. T. Ngan, S. B. Song, N. X. Cuong, N. H. Nam, P. V. Kiem, Y. H. Kim, C. V. Minh. New anti-inflammatory cembranoid diterpenoids from the Vietnamese soft coral Lobophytum crassum, Bioorg. Med. Chem. Lett., 24(1), 228-232 (2014).
- 4. G. F. Matthee, G. M. Konig, A. D. Wright. *Three new diterpenes from the marine soft coral Lobophytum crassum*, J. Nat. Prod., **61(2)**, 237-240 (1998).
- 5. B. Bowden, J. Coll, S. Mitchell, R. Kazlauskas. Studies of Australian soft corals. XXIV. Two cembranoid diterpenes from the soft coral Sinularia facile, Aust. J. Chem., **34**(7), 1551-1556 (1981).
- D. Grote, H. S. Soliman, K. H. Shaker, M. Hamza, K. Seifert. *Cembranoid diterpenes and a briarane diterpene from corals*, Nat. Prod. Res., 20(3), 285–291 (2006).
- J. M. Frincke, D. E. McIntyre, D. J. Faulkner. Deoxosarcophine from a soft coral, Sarcophyton sp. Tetrahedron Lett., 21(8), 735-738 (1980).
- 8. B. Bowden, J. Coll, S. Mitchell, R. Kazlauskas. Studies of Australian soft corals. XXIV. Two cembranoid diterpenes from the soft coral Sinularia facile, Aust. J. Chem., **34**(7), 1551-1556 (1981).

Corresponding author: Chau Van Minh

Institute of Marine Biochemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam E-mail: cvminh@vast.vn.