A POLYHYDROXYLATED STEROL AND A SAPONIN ISOLATED FROM THE STARFISH CULCITA NOVAEGUINEAE

Bui Thi Ngoan¹, Tran Thi Hong Hanh¹, Le Thi Vien¹, Chau Ngoc Diep¹, Nguyen Phuong Thao¹, Nguyen Van Thanh¹, Nguyen Xuan Cuong¹, Nguyen Hoai Nam¹, Do Cong Thung², Phan Van Kiem¹, Chau Van Minh^{1*}

¹Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST)

²Institute of Marine Environment and Resources, VAST

Received 23 January 2015; Accepted for Publication 18 March 2015

Abstract

Using various chromatographic methods, a polyhydroxylated sterol 5α -cholestane- 3β , 6β , 7α , 8β , 15α , 16β ,26-heptol (1) and an asterosaponin sodium salt of 6α -[(O- β -D-fucopyranosyl-($1\rightarrow 2$)-O- β -D-galactopyranosyl-($1\rightarrow 4$)-O-[β -D-quinovopyranosyl-($1\rightarrow 2$)]-O- β -D-xylopyranosyl-($1\rightarrow 3$)-O- β -D-quinovopyranosyl)oxy]- 5α -pregn-9(11)-ene-20-one (2), were isolated from the methanol extract of the starfish *Culcita novaeguineae*. Their structures were elucidated by 1D and 2D-NMR experiments and comparison of their NMR data with reported values. Compounds 1 was isolated from *C. novaeguineae* for the first time.

Keywords. Culcita novaeguineae, Oreasteridae, starfish, polyhydroxylated sterol, asterosaponin.

1. INTRODUCTION

Starfish are invertebrates belonging to the class Asteroidea, phylum Echinodermata. The secondary metabolites from starfish are characterized by a diversity of polar steroids, including polyhydroxylated steroids and steroid glycosides. These compounds have exhibited a variety of biological activities, such as cytotoxic, hemolytic, and anti-microbial effects [1-5].

As a part of our ongoing investigations on Vietnamese starfish, we address herein the isolation and structure identification of a polyhydroxylated sterol and an asterosaponin from the starfish *Culcita novaeguineae*.

2. EXPERIMENTAL

2.1. General experimental procedures

The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were recorded on a Bruker AM500 FT-NMR spectrometer, TMS was used as an internal standard. The electrospray ionization mass spectra (ESI-MS) were obtained on an Agilent 1260 series single quadrupole LC/MS system (Waldbronn, Germany). Medium pressure liquid chromatography (MPLC) was carried out on a Biotage - Isolera One system (SE-751 03 Uppsala, Sweden). Column

chromatography (CC) was performed on silica gel (Kieselgel 60, 70–230 mesh and 230–400 mesh, Merck) and YMC RP-18 resins (30–50 μ m, Fuji Silysia Chemical Ltd.). Thin layer chromatography (TLC) used pre-coated silica gel 60 F₂₅₄ (1.05554.0001, Merck) and RP-18 F_{254S} plates (1.15685.0001, Merck). Compounds were visualized by spraying with aqueous 10 % H₂SO₄ and heating for 3–5 minutes.

2.2. Marine materials

The sample of the starfish *C. novaeguineae* Muller & Troschel, 1842 was collected at Quangninh, Vietnam, in October 2013, and identified by Prof. Do Cong Thung. A voucher specimen (DAB-DG-CN-01/2013) was deposited at the Institute of Marine Biochemistry and Institute of Marine Environment and Resources, VAST, Vietnam.

2.3. Isolation

The fresh body walls of *C. novaeguineae* (10 kg) were cut into small pieces and extracted in hot methanol (three times for 6h each) to afford a MeOH residue (125 g, A) after removal of the solvent under reduced pressure. This extract was partitioned between H_2O and CH_2Cl_2 (3×1.0 L) to give CH_2Cl_2

extract (C, 15.2 g) and water layer. The CH₂Cl₂ extract (C, 15.2 g) was separated by silica gel MPLC gradient elution CH₂Cl₂-MeOH using of (100:1-1:1, v/v) to obtain nine fractions, C1-C9. Fraction C-8 (2 g) was separated into six subfractions, C-8.1-C8.6, by YMC RP-18 MPLC using gradient elution of MeOH–H₂O (1:1–5/1, v/v). Further separation of subfraction C-8.4 (0.17 g) by silica gel CC eluting with EtOAc-MeOH-H2O (10:1:0.1, v/v), followed by YMC CC with MeOH-H₂O (1.5:1, v/v) to obtain compound 1 (5.4 mg). The latter was passed through Diaion HP-20 CC eluting with increasing concentration of MeOH in water (0, 25, 50, 75, and 100%) to obtain four fractions, W1-W4, after removal of the fraction eluted with water. Fraction W4 (6.5 g) was separated into five subfractions, W4A-W4D, by silica gel MPLC using gradient elution of CH₂Cl₂-MeOH (20:1-1:1, v/v). Subfraction W4D (1.5 g) was further separated on YMC RP-18 CC eluting with MeOH-H₂O (1:1, v/v), followed by silica gel CC using CH₂Cl₂-MeOH-H₂O (3:1:0.15, v/v) as eluent furnished compound 2 (4.5 mg).

5α-cholestane-3β,6β,7α,8 $\hat{\beta}$,15α,16 $\hat{\beta}$,26-heptol (1): White powder; ¹H-NMR (500 MHz, DMSO-*d*₆) and ¹³C-NMR (125 MHz, DMSO-*d*₆) see table 1; ESI-MS: *m*/*z* 507 [M+Na]⁺ and 519 [M+Cl]⁻ (C₂₇H₄₈O₇, M = 484).

Figure 1: Chemical structures of 1 and 2

С	åδ _C	^b δ _C	$\delta_{C}^{c,d}$	$\delta_{\rm H}^{\ c,e}$ mult. (<i>J</i> in Hz)	$\mathbf{COSY} \ (\mathrm{H} \rightarrow \mathrm{H})$	HMBC (H \rightarrow C)
1	39.6	41.4	39.70	0.85 m/1.55 m	2	
2	31.5	31.7	30.80	1.32 m/1.60 m	1, 3	
3	72.3	72.5	69.99	3.40 m	2,4	
4	32.3	35.8	35.09	1.35 m/1.65 m	3, 5	
5	44.5	42.8	40.64	1.40 m	4, 6	
6	68.9	74.1	75.53	3.53 br dd (3.0, 4.5)	5,7	
7	76.5	78.4	72.02	3.67 t (3.0)	6	5, 9
8	77.7	77.8	76.53	-		
9	51.2	51.4	49.39	1.09 m	11	
10	37.8	36.4	34.78	-		
11	19.3	18.3	17.98	1.42 m/1.72 m	9,12	
12	43.2	43.2	41.53	1.10 m/1.82 m	11	
13	45.5	45.6	43.66	-		
14	59.6	59.5	57.86	1.27 m	15	
15	79.3	80.1	78.25	3.98 m	14, 16	
16	82.7	82.8	80.18	3.82 dt (1.5, 7.0)	15, 17	13
17	61.4	61.6	59.61	1.08 m	16, 20	
18	16.6	16.8	16.19	1.03 s		12, 13, 14, 17
19	13.9	16.4	15.33	1.00 s		1, 5, 9, 10
20	30.6	30.6	28.74	1.77 m	17, 21, 22	
21	18.4	18.3	17.65	0.83 d (6.5)	20	17, 20, 22
22	37.1	37.0	35.32	0.96m/1.35 m	20, 23	
23	24.9	24.8	23.24	1.12 m/1.37 m	22, 24	
24	35.0	35.0	33.48	0.94 m/1.35 m	23, 25	
25	37.1	37.1	35.49	1.45 m	24, 26, 27	
26	68.5	69.6	66.25	3.15 m/3.24 m	25	14, 25, 27
27	17.4	17.2	17.00	0.81 d (6.5)	25	24, 25, 26
8-OH	-	-	-	4.07 s		7, 8, 14

Table 1: NMR data of 1 and reported compounds

^aδ_C of 5*α*-cholestane-3*β*,6*α*,7*α*,8*β*,15*α*,16*β*,26-heptol in CD₃OD [6], ^bδ_C of 5*α*-cholestane-3*β*,6*β*,7*α*,8*β*,15*α*,16*β*,26-heptol in CD₃OD [7], ^crecorded in DMSO-*d*₆, ^d125 MHz, ^e500 MHz.

A polyhydroxylated sterol and a saponin...

С	${}^{a}\boldsymbol{\delta}_{\mathbf{C}}$	δ_{C}^{b}	$\delta_{\rm H}^{\ b}$ mult. (<i>J</i> = Hz)	С	${}^{a}\boldsymbol{\delta}_{\mathbf{C}}$	$\delta_{C}{}^{b}$	$\delta_{\rm H}^{\ b}$ mult. (<i>J</i> = Hz)
1	35.9	35.33	1.28 m/1.63 m	Xyl			
2	29.4	28.43	1.39 m/2.12 m	1''	104.4	102.65	4.53 d (7.0)
3	77.6	75.40	3.86 m	2''	82.2	82.69	3.35 °
4	30.7	29.57	1.08 m/2.37 m	3''	75.5	74.11	3.57 °
5	49.2	48.49	1.10 m	4''	79.2	77.17	3.60 ^c
6	80.2	78.06	3.47 m	5''	64.5	63.16	3.30/3.95 ^c
7	41.6	40.62	0.86 m/2.26 m	Qui II			
8	35.5	34.97	2.03 m	1'''	105.1	104.75	4.43 d (7.5)
9	146.0	145.78	-	2'''	75.4	74.99	3.07 dd (7.5, 9.0)
10	38.3	37.92	-	3'''	76.9	75.60	3.14 t (9.0)
11	116.0	115.57	5.31 d (4.5)	4'''	76.2	74.75	2.86 t (9.0)
12	40.6	40.09	2.20 m/2.28 m	5'''	73.9	72.17	3.22 °
13	42.5	41.99	-	6'''	18.5	17.40	1.18 d (6.0)
14	53.7	52.97	1.37 m	Gal			
15	23.1	22.38	1.58 m/2.03 m	1''''	102.4	100.58	4.41 d (7.5)
16	25.6	25.01	1.20 m/1.73 m	2''''	83.4	81.86	3.48 ^c
17	63.3	62.44	2.65 t (9.5)	3''''	75.0	72.61	3.33 °
18	13.1	12.90	0.43 s	4''''	69.0	67.48	3.67 br s
19	19.2	19.12	0.88 s	5''''	76.8	75.34	3.42 °
20	208.3	208.75	-	6''''	62.0	60.37	3.50 [°]
21	31.0	30.94	2.05 s	Fuc			
Qui I				1'''''	107.2	105.73	4.21 d (7.0)
1′	105.1	102.85	4.31 d (8.0)	2'''''	71.9	71.09	3.40 [°]
2′	74.1	73.17	3.13 [°]	3'''''	75.0	73.21	3.51 ^c
3′	90.2	87.87	3.28 °	4'''''	72.6	70.88	3.27 °
4′	74.5	73.08	2.91 t (9.0)	5'''''	71.9	70.59	3.53 °
5'	71.9	70.59	3.27 °	6'''''	17.2	16.76	1.12 d (6.0)
6′	17.9	17.96	1.14 d (6.0)				

Table 2: ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) data of **2** and reported compound

^a $\delta_{\rm C}$ of sodium salt of 6α -[(*O*- β -D-fucopyranosyl-(1 \rightarrow 2)-*O*- β -D-galactopyranosyl-(1 \rightarrow 4)-*O*-[β -D-quinovopyranosyl-(1 \rightarrow 2)]-*O*- β -D-xylopyranosyl-(1 \rightarrow 3)-*O*- β -D-quinovopyranosyl)oxy]-5 α -pregn-9(11)-ene-20-one in pyridine- d_5 [8], ^brecorded in DMSO- d_6 , ^coverlapped signals.

Sodium salt of 6α -[(O- β -D-fucopyranosyl-($1\rightarrow 2$)-O- β -D-galactopyranosyl-($1\rightarrow 4$)-O-[β -D-quinovopyranosyl-($1\rightarrow 2$)]-O- β -D-xylopyranosyl-($1\rightarrow 3$)-O- β -D-quinovopyranosyl)oxy]-5- α -pregn-9(11)-ene-20-one (**2**): White powder; ¹H-NMR (500 MHz, DMSO- d_6) and ¹³C-NMR (125 MHz, DMSO- d_6) see table 2; ESI-MS: m/z 1143 [M–Na]⁻ ($C_{50}H_{79}NaO_{27}S$, M = 1166).

3. RESULTS AND DISCUSSION

Compound **1** was obtained as a white powder. The NMR features are typical for a polyhydroxylated sterol, one main constituent from starfish [1]. The ¹H-NMR spectrum revealed signals of two tertiary methyl [$\delta_{\rm H}$ 1.03 (H-18) and 1.00 (H-19), each 3H, s] and two secondary methyl groups [$\delta_{\rm H}$ 0.83 (H-21) and 0.81 (H-27), each 3H, d, J = 6.5 Hz]. In addition, five oxymethine groups [$\delta_{\rm C}$ 69.99 (C-3), 75.65 (C-6), 72.02 (C-7), 78.25 (C-15), and 80.18 (C-16)/ $\delta_{\rm H}$ 3.40 (1H, m, H-3), 3.53 (1H, br dd, J = 3.0, 4.5 Hz, H-6), 3.67 (1H, t, J = 3.0 Hz, H-7), 3.98 (1H, m, H-15), and 3.82 (1H, dt, J = 1.5, 7.0 Hz, H-16)], one oxygenated quaternary carbon [$\delta_{\rm C}$ 76.53 (C-8)], and one oxymethylene group [$\delta_{\rm C}$ 66.25 (C-26)/ $\delta_{\rm H}$ 3.15 (1H, m, H_a-26) and 3.24 (1H, m, H_b-26)] were determined in the ¹H- and ¹³C-NMR spectra of **1**. All ¹H-NMR data were assigned with the relevant ¹³C-NMR data by HSQC experiment and the results were shown in the table 1.

Analysis of ¹H-¹H COSY correlations led to identify the connectivities of H-1/H-2/H-3/H-4/H-5/H-6/H-7, H-9/H-11/H-12, H-15/H-16/H-17/H-20/H-22, H-23/H-24/H-25/H-26, H-20/H-21, and H-25/H-27. These data and the HMBC cross-peaks of H-18 ($\delta_{\rm H}$ 1.03) with C-12 ($\delta_{\rm C}$ 41.53), C-13 ($\delta_{\rm C}$ 43.66), C-14 (δ_{C} 57.86), and C-17 (δ_{C} 59.61); H-19 $(\delta_{\rm H} \ 1.00)$ with C-1 ($\delta_{\rm C} \ 39.70$), C-5 ($\delta_{\rm C} \ 40.64$), C-9 (δ_C 49.39), and C-10 (δ_C 34.78); and those of OH-8 $(\delta_{\rm H} 4.07)$ with C-7 ($\delta_{\rm C}$ 72.02), C-8 ($\delta_{\rm C}$ 76.53)/C-14 $(\delta_{\rm C} 57.86)$, clearly confirmed the planar structure of 1 (figure 2), which was also supported by comparison of the NMR data with the reported values [6, 7]. In the ROESY spectrum, the spatial proximities were observed between H-5 ($\delta_{\rm H}$ 1.40) and H-3 (δ_H 3.40)/H-6 (δ_H 3.53), H-6 (δ_H 3.53) and OH-7 (δ_H 5.45), and H-16 (δ_H 3.82) and H-17 (δ_H 1.08) confirmed the α -orientation for H-3, H-6, OH-7, and H-16. Moreover, the correlations of H-15 (3.98) with H-7 (δ_H 3.67) and H-18 (δ_H 1.03), and those of OH-8 (δ_H 4.07) with H-7 (δ_H 3.67) and H-19 ($\delta_{\rm H}$ 1.00) indicated β -orientation of H-7, OH-8, and H-15. Thus, compound **1** was elucidated as 5α cholestane- 3β , 6β , 7α , 8β , 15α , 16β ,26-heptol. This is the first report of **1** from the starfish C. novaeguineae. However, based on 2D-NMR experiments, the reported ¹³C-NMR data at C-6 and C-7 [7] must be reversed as shown in the table 1.

Figure 2: Key ROESY correlations of **1**

The NMR spectral data of **2** indicated an asterosaponin [2, 3] containing five sugar units. All carbon signals were assigned with relevant protons by mean of an HSQC experiment (Table 2). Comparison of the ¹³C-NMR of **2** with published values and analysis of HMBC cross-peaks led to assignment of **2** as sodium salt of 6α -[(O- β -D-fucopyranosyl-($1\rightarrow 2$)-O- β -D-galactopyranosyl-($1\rightarrow 4$)-O-[β -D-quinovopyranosyl-($1\rightarrow 2$)]-O- β -D-xylopyranosyl-($1\rightarrow 3$)-O- β -D-quinovopyranosyl) oxy]-5 α -pregn-9(11)-ene-20-one in pyridine- d_5 [8, 9]. The HMBC correlation of H-1""" ($\delta_{\rm H}$ 4.21) with

C-2'''' (δ_C 81.86), H-1'''' (δ_H 4.41) with C-4'' (δ_C 77.17), H-1''' (δ_H 4.43) with C-2'' (δ_C 82.69), and that of H-1'' (δ_H 4.53) with C-3' (δ_C 87.87) confirmed positions of all inner linkages. Moreover, anomeric proton H-1' (δ_H 4.31) had an HMBC crosspeak with C-6 (δ_C 78.06) confirming the attachment of the pentaglycoside chain at C-3 (figure 3).

Acknowledgements. This work was financially supported by Vietnam Academy of Science and Technology (Codes: VAST.TD.DAB.03/13–15 and VAST.HTQT.Nga.08/2014-2015).

Figure 3: Key HMBC correlations of 2

REFERENCES

- G. Dong, T. Xu, B. Yang, X. Lin, X. Zhou, X. Yang, Y. Liu. *Chemical constituents and bioactivities of* starfish, Chem. Biodivers., 8(5), 740-791 (2011).
- M. Iorrizzi, S. D. Marino, F. Zollo. Steroidal oligoglycosides from the Asteroidea, Curr. Org. Chem., 5(9), 951-973 (2001).
- N. V. Ivanchina, A. A. Kicha, V. A. Stonik. Steroid glycosides from marine organisms, Steroids, 76(5), 425-454 (2011).
- L. Minale, R. Riccio, F. Zollo. Steroidal oligoglycosides and polyhydroxysteroids from echinoderms, Fortschr. Chem. Org. Naturst., 62, 75-308 (1993).
- V. A. Stonik, N. V. Ivanchina, A. A. Kicha. New polar steroids from starfish, Nat. Prod. Commun., 3, 1587-1610 (2008).
- 6. R. Riccio. A novel group of highly hydroxylated steroids from the starfish Protoreaster nodosus, Tetrahedron, **38(24)**, 3615-3622 (1982).
- I. Bruno, L. Minale, R. Riccio, S. La Barre, D. Laurent. Isolation and structure of new polyhydroxylated sterols from a deep-water starfish of the genus Rosaster, Gazz. Chim. Ital., 120(7), 449-451 (1990).

VJC, Vol. 53(2e), 2015

8. Y. Itakura, T. Komori. Biologically active glycosides from Asteroidea, IX. steroid oligoglycosides from the starfish Asterias amurensis [cf.] versicolor Sladen, 2. Structure elucidation of two new oligoglycoside sulfates, versicoside B and versicoside C, Liebigs A polyhydroxylated sterol and a saponin...

Annalen der Chemie, 1986(2), 359-373 (1986).

 H. F. Tang, Y. H. Yi, L. Li, P. Sun, D. Z. Zhou, B. S. Liu. A new asterosaponin from the starfish Culcita novaeguineae, Chin. Chem. Lett., 16(5), 619-622 (2005).

Corresponding author: Chau Van Minh

Institute of Marine Biochemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam E-mail: cvminh@vast.vn.