SAPONINS ISOLATED FROM THE VIETNAMESE SEA CUCUMBER STICHOPUS CHLORONOTUS

Le Thi Vien¹, Nguyen Phuong Thao¹, Tran Thi Hong Hanh¹, Phan Thi Thanh Huong¹, Nguyen Van Thanh¹, Nguyen Xuan Cuong^{1*}, Nguyen Hoai Nam¹, Do Cong Thung², Phan Van Kiem¹, Young Ho Kim³, Chau Van Minh¹

¹Institute of Marine Biochemistry, Vietnam Academy of Science and Technology

²Institute of Marine Environment and Resources, Vietnam Academy of Science and Technology

³College of Pharmacy, Chungnam National University, Korea

Received 23 January 2015; Accepted for Publication 18 March 2015

Abstract

Using various chromatographic methods, three triterpene saponins neothyonidioside (1), stichoposide D (2), and holothurin B (3), were isolated from the methanol extract of the sea cucumber *Stichopus chloronotus*. Their structures were elucidated by 1D and 2D-NMR experiments and comparison of their NMR data with reported values. Compound 1 was isolated from *S. chloronotus* for the first time.

Keywords. Stichopus chloronotus, Stichopodidae, sea cucumber, triterpene saponin.

1. INTRODUCTION

Sea cucumbers belonging to the family Stichopodidae (phylum Echinodermata, class Holothurioidea, order Aspidochirotida) are usually served as a culinary delicacy and traditional tonic. Among the members of this family, *Stichopus chloronotus* Brandt is a marine invertebrate found in benthic areas and deep seas in the Pacific, Indo-Pacific, and Atlantic oceans [1]. Triterpene saponins are main constituents of this species [2-4].

As a part of our ongoing investigations on Vietnamese echinoderms, we address herein the

isolation and structure identification of three triterpene saponins (figure 1) from *S. chloronotus*.

2. EXPERIMENTAL

2.1. General experimental procedures

The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were recorded on a Bruker AM500 FT-NMR spectrometer, TMS was used as an internal standard. The electrospray ionization mass spectra (ESI-MS) were obtained on an Agilent 1260 series single quadrupole LC/MS system. Medium pressure liquid chromatography (MPLC) was carried out on a

Figure 1: Chemical structures of 1-3

Biotage - Isolera One system (SE-751 03 Uppsala, Sweden). Column chromatography (CC) was performed on silica gel (Kieselgel 60, 70-230 mesh and 230-400 mesh, Merck) and YMC RP-18 resins (30-50 μ m, Fuji Silysia Chemical Ltd.). Thin layer chromatography (TLC) used pre-coated silica gel 60 F₂₅₄ (1.05554.0001, Merck) and RP-18 F_{254S} plates (1.15685.0001, Merck). Compounds were visualized by spraying with aqueous 10 % H₂SO₄ and heating for 3-5 minutes.

2.2. Marine materials

The sample of the sea cucumber *S. chloronotus* Brandt was collected at Cat Ba, Haiphong, Vietnam, in November 2011, and identified by Professor Do Cong Thung (Institute of Marine Environment and Resources, VAST). A voucher specimen (SC-11-2011-01) was deposited at the Institute of Marine Biochemistry and Institute of Marine Environment and Resources, VAST, Vietnam.

2.3. Isolation

The fresh body walls of *S. chloronotus* (6 kg) were cut into small pieces and immersed in hot methanol (3 times for 6 h each) to afford a MeOH extract (10.45 g, A) after removal of the solvent under reduced pressure. This extract was partitioned between H₂O and *n*-butanol, 3 times (0.7 L each). The *n*-butanol soluble portion (2.42 g, B) was subjected to CC over silica gel (230–400 mesh) eluting with a gradient (dichloromethane–methanol 10:1, 3:1, 1:1, v/v.).

Combination of similar fractions on the basis of TLC analysis afforded 3 fractions (Fr. B1-B3). Fraction B3 (0.45 g) was further separated by reversephase silica (75 µm) MPLC eluting with a H₂O-CH₃OH (35-65 %) gradient into two fractions (Fr. B3.1-B3.2). Subfraction B3.2 (0.27 g) was gelfiltered on Sephadex LH-20 (CH₃OH-H₂O, 4.5:1) followed by silica gel CC (CH₂Cl₂-CH₃OH-H₂O, 1.8:1:0.2) to yield 2 (34.11 mg). Subfraction B3.1 (0.18 g) was subjected to silica gel CC with CH₂Cl₂-CH₃OH-H₂O (2.5:1:0.15)and further separated by YMC RP-18 CC using CH₃OH-H₂O (3.5:1, v/v) as the eluent to afford 1 (12.25 mg). Next, fraction B2 (0.62 g) was further subjected to silica gel CC with a CH₂Cl₂-MeOH-H₂O (65:15:2-10:10:2) gradient to obtain 3 subfractions (Fr. B2.1-B2.3). Subfraction B2.1 (0.33 g) was further separated by YMC RP-18 CC using acetone-water (2:1, v/v) as eluent to give 3 (15.82 mg).

Neothyonidioside (1): White powder; $[\alpha]_D$: -70 (*c* 0.15, MeOH); ¹H-NMR (500 MHz, Pyridine-*d*₅) and ¹³C-NMR (125 MHz, Pyridine-*d*₅) see tables 1 and 2; ESI-MS: *m*/*z* 1179 [M+Na]⁺ (C₅₃H₈₁NaO₂₄S, M = 1156).

Stichoposide D (2): White powder; $[\alpha]_D$: -44 (*c* 0.15, MeOH); ¹H-NMR (500 MHz, Pyridine-*d*₅) and ¹³C-NMR (125 MHz, Pyridine-*d*₅) see tables 1 and 2; ESI-MS: *m*/*z* 1477 [M+Na]⁺ (C₆₈H₁₁₀O₃₃, M = 1454).

Holothurin B (3): White powder; $[\alpha]_D$: -11 (*c* 0.15, MeOH); ¹H-NMR (500 MHz, DMSO-*d*₆) and ¹³C-NMR (125 MHz, DMSO-*d*₆) see tables 1 and 2; ESI-MS: *m*/*z* 905 [M+Na]⁺ (C₄₁H₆₃NaO₁₇S, M = 882).

3. RESULTS AND DISCUSSION

Compound 1 was obtained as a white amorphous powder. The NMR features indicated a holostane-type saponin, one of the main constituents of sea cucumbers [9]. The ¹³C-NMR spectrum exhibited 53 carbon signals, of which 30 are belonging to a triterpene aglycon and 23 of a tetrasaccharide chain. The aglycon part contained signals of an oxymethine group [$\delta_{\rm C}$ 88.98 (C-3)/ $\delta_{\rm H}$ 3.19 (1H, m, H-3)], one oxygenated quaternary carbon [δ_C 83.11 (C-20)], two double bonds [δ_C 151.26 (s, C-9) and 111.46 (d, C-11)/ $\delta_{\rm H}$ 5.31 (1H, br s, H-11) and δ_C 145.58 (s, C-25) and 110.77 (t, C- $27)/\delta_{\rm H}$ 4.76 (2H, s, H-27)], two carbonyl [$\delta_{\rm C}$ 213.11 (C-16) and 175.99 (C-18)], and six tertiary methyl groups [δ_C 22.31 (C-19), 26.81 (C-21), 22.31 (C-27), 28.06 (C-28), 16.69 (C-29), and 20.82 (C-30)/ $\delta_{\rm H}$ 1.39 (H-19), 1.38 (H-21), 1.67 (H-27), 1.22 (H-28), 1.04 (H-29), and 0.89 (H-30), each 3H, s].

The HMBC cross-peaks of methyl protons H-28 ($\delta_{\rm H}$ 1.22) and H-29 ($\delta_{\rm H}$ 1.04) with C-3 ($\delta_{\rm C}$ 88.98) confirmed the common position of the oxymethine group at C-3. The position of two double bonds at C-9/C-11 and C-25/C-26 was assigned by HMBC correlations of H-19 ($\delta_{\rm H}$ 1.39) with C-9 ($\delta_{\rm C}$ 151.26) and H-27 ($\delta_{\rm H}$ 1.67) with C-25 ($\delta_{\rm C}$ 145.58) and C-26 ($\delta_{\rm C}$ 110.77). The cross-peak of H-12 ($\delta_{\rm H}$ 2.50) with C-18 ($\delta_{\rm C}$ 175.99), H-15 ($\delta_{\rm H}$ 2.23 and 2.37) with C-16 ($\delta_{\rm C}$ 213.11), and those of H-17 ($\delta_{\rm H}$ 2.80) with C-18 ($\delta_{\rm C}$ 175.99) and C-16 ($\delta_{\rm C}$ 213.11) confirmed the positions of the two carbonyl groups at C-16 and C-18.

VJC, Vol. 53(2e), 2015

<i>Table 1:</i> ¹ H-NMR and	¹³ C-NMR	data for the	aglycon	of 1-3	and re	ported com	pounds
--	---------------------	--------------	---------	--------	--------	------------	--------

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1			2		3
$0c^{-1}$ mult. (J in Hz) $0c^{-1}$ mult. (J in Hz) $0c^{-1}$ mult. (J in Hz) 1 36.7 36.22 1.40 m/1.83 m 35.9 36.27 1.40 m/1.45 m 36.5 35.63 1.68 m/1.73 m 2 27.3 27.11 1.93 m/2.15 m 27.0 27.13 1.89 m/2.09 m 27.0 26.17 1.65 m/1.85 m 3 89.1 88.98 3.19 m 88.8 88.87 3.21 m 88.6 87.80 3.02 m 4 40.2 39.96 - 39.45 - 40.0 39.20 - 7 28.8 28.56 1.28 m/1.60 m 119.4 119.95 5.61 br s 28.3 27.29 1.33 m/1.90 m 8 39.1 38.74 3.25 m 146.4 146.57 40.9 39.65 2.87 m 9 151.7 151.26 - 47.1 47.36 3.40 m 115.6 152.57 - 10 40.1 39.75 35.2 35.53 - 39.8 38.76	C ^a δ _C	^a δ _C	e b.c	$\delta_{\rm H}{}^{\rm b,d}$	eδ _C	e b.c	$\delta_{H}^{b,d}$	^f δ _C –	$ c_{,g} \delta_{H}^{d,g}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	0 C /	mult. (J in Hz)	-	0 _C /	mult. (J in Hz)	-	$\mathbf{o}_{\mathbf{C}} \sim \text{mult.} (J \text{ in Hz})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	36.7	36.22	1.40 m/1.83 m	35.9	36.27	1.40 m/1.45 m	36.5	35.63 1.68 m/1.73 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	27.3	27.11	1.93 m/2.15 m	27.0	27.13	1.89 m/2.09 m	27.0	26.17 1.65 m/1.85 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	89.1	88.98	3.19 m	88.8	88.87	3.21 m	88.6	87.80 3.02 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	40.2	39.96	-		39.45	-	40.0	39.20 -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	53.3	52.89	0.92 m	47.8	47.98	0.95 m	52.8	51.91 0.86 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	21.5	21.18	1.50 m/1.70 m	22.5	23.19	1.92 m	21.3	20.34 1.45 m/1.65 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	28.8	28.56	1.28 m/1.60 m	119.4	119.95	5.61 br s	28.3	27.29 1.33 m/1.90 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	39.1	38.74	3.25 m	146.4	146.57	-	40.9	39.65 2.87 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	151.7	151.26	-	47.1	47.36	3.40 m	153.6	152.57 -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	40.1	39.75	-	35.2	35.53	-	39.8	38.76 -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	111.4	111.46	5.31 br s	22.8	22.91	1.43 m/1.71 m	115.4	114.46 5.24 d (4.0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	32.6	32.09	2.50 m	30.4	30.25	1.85 m/1.93 m	71.6	70.16 4.40 brs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	56.1	55.72	-	58.2	58.43	-	58.9	57.43 -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	42.4	42.08	-	51.0	51.21	-	46.0	44.82 -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	52.3	52.00	2.23 d (15.5)	33.9	34.22	1.60 m/1.75 m	36.8	35.82 1.00 m/1.38 m
16213.9213.11-24.624.801.89 m/2.05 m35.634.341.95 m/2.64 m1761.861.362.80 s54.354.172.30 m89.688.39-18176.8175.99-180.0179.77-174.1173.42-1920.922.311.39 s23.924.001.16 s20.321.811.03 s2083.383.11-83.383.17-86.585.95-21 22.526.81 1.38 s26.726.971.47 s19.018.341.36 s2238.838.501.63 m/1.80 m44.044.061.85 m/2.15 m80.779.414.10 t (7.0)2322.722.421.50 m/1.78 m68.168.285.39 m28.327.391.68 m/2.00 m2438.338.021.95 m44.945.321.25 m/1.55 m38.537.731.63 m/1.72 m25145.9145.58-24.324.541.54 m81.380.73-26110.8110.774.76 s23.222.160.92 d (6.5)27.427.041.16 s2827.228.061.22 s28.428.771.19 s28.127.391.00 s2917.016.691.04 s16.917.361.06 s16.716.080.80 s3023.420.820.89 s30.930.931.03 s22				2.37 d (15.5)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	213.9	213.11	-	24.6	24.80	1.89 m/2.05 m	35.6	34.34 1.95 m/2.64 m
18176.8175.99-180.0179.77-174.1173.42-1920.922.311.39 s23.924.001.16 s20.321.811.03 s2083.383.11-83.383.17-86.585.95-2122.526.811.38 s26.726.971.47 s19.018.341.36 s2238.838.501.63 m/1.80 m44.044.061.85 m/2.15 m80.779.414.10 t (7.0)2322.722.421.50 m/1.78 m68.168.285.39 m28.327.391.68 m/2.00 m2438.338.021.95 m44.945.321.25 m/1.55 m38.537.731.63 m/1.72 m25145.9145.58-24.324.541.54 m81.380.73-26110.8110.774.76 s22.323.190.87 d (6.5)28.628.401.21 s2728.422.311.67 s23.222.160.92 d (6.5)27.427.041.16 s2827.228.061.22 s28.428.771.19 s28.127.391.00 s3023.420.820.89 s30.930.931.03 s22.519.421.18 sOAc77.016.691.04 s16.9170.73-21.2 s21.2 s	17	61.8	61.36	2.80 s	54.3	54.17	2.30 m	89.6	88.39 -
1920.922.31 1.39 s 23.924.00 1.16 s 20.3 21.81 1.03 s 20 83.3 83.11 - 83.3 83.17 - 86.5 85.95 -21 22.5 26.81 1.38 s 26.7 26.97 1.47 s 19.0 18.34 1.36 s 22 38.8 38.50 $1.63 \text{ m/}1.80 \text{ m}$ 44.0 44.06 $1.85 \text{ m/}2.15 \text{ m}$ 80.7 79.41 $4.10 \text{ t} (7.0)$ 23 22.7 22.42 $1.50 \text{ m/}1.78 \text{ m}$ 68.1 68.28 5.39 m 28.3 27.39 $1.68 \text{ m/}2.00 \text{ m}$ 24 38.3 38.02 1.95 m 44.9 45.32 $1.25 \text{ m/}1.55 \text{ m}$ 38.5 37.73 $1.63 \text{ m/}1.72 \text{ m}$ 25 145.9 145.58 - 24.3 24.54 1.54 m 81.3 80.73 -26 110.8 110.77 4.76 s 23.2 22.16 $0.92 \text{ d} (6.5)$ 27.4 27.04 1.16 s 28 27.2 28.06 1.22 s 28.4 28.77 1.19 s 28.1 27.39 1.00 s 29 17.0 16.69 1.04 s 16.9 17.36 1.06 s 16.7 16.08 0.80 s 30 23.4 20.82 0.89 s 30.9 30.93 1.03 s 22.5 19.42 1.18 s OAc 170.8 170.73 $ 21.24$ 21	18	176.8	175.99	-	180.0	179.77	-	174.1	173.42 -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	20.9	22.31	1.39 s	23.9	24.00	1.16 s	20.3	21.81 1.03 s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	83.3	83.11	-	83.3	83.17	-	86.5	85.95 -
22 38.8 38.50 1.63 m/1.80 m 44.0 44.06 1.85 m/2.15 m 80.7 79.41 4.10 t (7.0) 23 22.7 22.42 1.50 m/1.78 m 68.1 68.28 5.39 m 28.3 27.39 1.68 m/2.00 m 24 38.3 38.02 1.95 m 44.9 45.32 1.25 m/1.55 m 38.5 37.73 1.63 m/1.72 m 25 145.9 145.58 - 24.3 24.54 1.54 m 81.3 80.73 - 26 110.8 110.77 4.76 s 22.3 23.19 0.87 d (6.5) 28.6 28.40 1.21 s 27 28.4 22.31 1.67 s 23.2 22.16 0.92 d (6.5) 27.4 27.04 1.16 s 28 27.2 28.06 1.22 s 28.4 28.77 1.19 s 28.1 27.39 1.00 s 29 17.0 16.69 1.04 s 16.9 17.36 1.06 s 16.7 16.08 0.80 s 30 23.4 20.82 0.89 s 30.9 30.93 1.03 s 22.5<	21	22.5	26.81	1.38 s	26.7	26.97	1.47 s	19.0	18.34 1.36 s
23 22.7 22.42 1.50 m/1.78 m 68.1 68.28 5.39 m 28.3 27.39 1.68 m/2.00 m 24 38.3 38.02 1.95 m 44.9 45.32 1.25 m/1.55 m 38.5 37.73 1.63 m/1.72 m 25 145.9 145.58 - 24.3 24.54 1.54 m 81.3 80.73 - 26 110.8 110.77 4.76 s 22.3 23.19 0.87 d (6.5) 28.6 28.40 1.21 s 27 28.4 22.31 1.67 s 23.2 22.16 0.92 d (6.5) 27.4 27.04 1.16 s 28 27.2 28.06 1.22 s 28.4 28.77 1.19 s 28.1 27.39 1.00 s 29 17.0 16.69 1.04 s 16.9 17.36 1.06 s 16.7 16.08 0.80 s 30 23.4 20.82 0.89 s 30.9 30.93 1.03 s 22.5 19.42 1.18 s OAc 71.4 21.24 21.25	22	38.8	38.50	1.63 m/1.80 m	44.0	44.06	1.85 m/2.15 m	80.7	79.41 4.10 t (7.0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	22.7	22.42	1.50 m/1.78 m	68.1	68.28	5.39 m	28.3	27.39 1.68 m/2.00 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	38.3	38.02	1.95 m	44.9	45.32	1.25 m/1.55 m	38.5	37.73 1.63 m/1.72 m
26 110.8 110.77 4.76 s 22.3 23.19 0.87 d (6.5) 28.6 28.40 1.21 s 27 28.4 22.31 1.67 s 23.2 22.16 0.92 d (6.5) 27.4 27.04 1.16 s 28 27.2 28.06 1.22 s 28.4 28.77 1.19 s 28.1 27.39 1.00 s 29 17.0 16.69 1.04 s 16.9 17.36 1.06 s 16.7 16.08 0.80 s 30 23.4 20.82 0.89 s 30.9 30.93 1.03 s 22.5 19.42 1.18 s OAc 170.8 170.73 -	25	145.9	145.58	-	24.3	24.54	1.54 m	81.3	80.73 -
27 28.4 22.31 1.67 s 23.2 22.16 0.92 d (6.5) 27.4 27.04 1.16 s 28 27.2 28.06 1.22 s 28.4 28.77 1.19 s 28.1 27.39 1.00 s 29 17.0 16.69 1.04 s 16.9 17.36 1.06 s 16.7 16.08 0.80 s 30 23.4 20.82 0.89 s 30.9 30.93 1.03 s 22.5 19.42 1.18 s OAc 21.4 21.24 21.2 s	26	110.8	110.77	4.76 s	22.3	23.19	0.87 d (6.5)	28.6	28.40 1.21 s
28 27.2 28.06 1.22 s 28.4 28.77 1.19 s 28.1 27.39 1.00 s 29 17.0 16.69 1.04 s 16.9 17.36 1.06 s 16.7 16.08 0.80 s 30 23.4 20.82 0.89 s 30.9 30.93 1.03 s 22.5 19.42 1.18 s OAc 21.4 21.24 21.2 s 21.2 s 21.2 s 21.2 s 21.2 s	27	28.4	22.31	1.67 s	23.2	22.16	0.92 d (6.5)	27.4	27.04 1.16 s
29 17.0 16.69 1.04 s 16.9 17.36 1.06 s 16.7 16.08 0.80 s 30 23.4 20.82 0.89 s 30.9 30.93 1.03 s 22.5 19.42 1.18 s OAc 170.8 170.73 - 21.4 21.2 s 21.2 s	28	27.2	28.06	1.22 s	28.4	28.77	1.19 s	28.1	27.39 1.00 s
30 23.4 20.82 0.89 s 30.9 30.93 1.03 s 22.5 19.42 1.18 s OAc 170.8 170.73 - 21.44 21.24 21.2 s	29	17.0	16.69	1.04 s	16.9	17.36	1.06 s	16.7	16.08 0.80 s
OAc 170.8 170.73 -	30	23.4	20.82	0.89 s	30.9	30.93	1.03 s	22.5	19.42 1.18 s
	OAc				170.8	170.73	-		
UAC 21.4 21.54 2.12 8	OAc				21.4	21.34	2.12 s		

^aδ_C of neothyonidioside [5], ^brecorded in pyridine- d_5 , ^c125 MHz, ^d500 MHz, ^eδ_C of stichoposide E [6], ^fδ_C of holothurin B [7], ^grecorded in DMSO- d_6 .

Figure 2: Key HMBC correlations of 1

In addition, analysis of the NMR spectra of **1** revealed four anomeric carbon signals at $\delta_{\rm C}$ 104.86 (C-1'), 104.00 (C-1''), 104.67 (C-1'''), and 105.59 (C-1'''') which correlated with corresponding anomeric protons at $\delta_{\rm H}$ 4.70 (1H, d, J = 7.0 Hz, H-1'), 5.03 (1H, d, J = 7.0 Hz, H-1''), 4.85 (1H, d, J = 7.0 Hz, H-1''') in the HSQC spectrum, confirming the presence of four sugar moieties. The large coupling constants of the anomeric protons (J = 7.0 or 7.5 Hz) suggested the presence of β -glycosidic linkages. The ¹H and ¹³C-NMR data for the sugar part of **1** (Table 2) was similar to those of neothyonidioside [5], which was further confirmed by HMBC experiment. The HMBC cross-peaks of H-1'' ($\delta_{\rm H}$ 5.03) with C-2' ($\delta_{\rm C}$

VJC, Vol. 53(2e), 2015

83.11), H-1''' (δ_H 4.85) with C-4'' (δ_C 86.50), and those of H-1'''' (δ_H 5.27) with C-3''' (δ_C 87.09) confirmed the sequence of sugar units in **1**. Finally,

Nguyen Xuan Cuong, et al.

the attached position of the tetrasaccharide chain at C-3 of the aglycon was assigned by HMBC correlation of H-1' (δ_H 4.70) and C-3 (δ_C 88.98).

		1			2			3	
С	^a δ _C	s b,c	$\delta_{\mathrm{H}}^{\mathrm{b,d}}$	eδC	s b,c	$\delta_{\mathrm{H}}^{}\mathrm{b},\mathrm{d}}$	^f δ _C	s c,g	$\delta_{\mathrm{H}}{}^{\mathrm{d},\mathrm{g}}$
		O _C	mult. $(J = Hz)$		O _C	mult. $(J = Hz)$		0 _C ²⁰	mult. $(J = Hz)$
	Sulfo-X	Kyl		Xyl I			Sulfo-	Xyl	
1'	105.6	104.86	4.70 d (7.0)	105.3	105.21	4.71 d (7.0)	104.8	103.97	4.32 d (7.5)
2'	83.6	83.11	3.95 ^h	83.8	83.05	4.05 ^h	83.0	81.52	3.35 ^h
3'	76.0	75.02	4.12 ^h	75.6	75.56	4.15 ^h	76.5	74.35	3.50 ^h
4'	73.8	73.45	3.87 ^h	78.05	77.51	4.20 ^h	74.7	74.28	3.95 ^h
5'	64.4	63.70	3.65/4.65 ^h	64.4	63.97	3.60/4.36 ^h	63.8	62.92	3.20/3.95 ^h
	Qui			Glc I			Qui		
1''	105.5	104.00	5.03 d (7.0)	105.3	105.35	5.17 d (7.0)	105.2	104.16	4.39 d (7.5)
2''	76.6	75.55	3.88 ^h	75.6	76.49	3.99 ^h	75.9	75.34	3.00 ^h
3''	75.1	75.02	3.95 ^h	76.3	76.54	3.76 ^h	77.5	75.79	3.11 ^h
4''	86.2	86.50	3.46 ^h	80.9	80.32	4.30 ^h	76.5	75.19	2.76 ^h
5''	71.1	71.61	3.68 ^h	76.3	78.18	3.85 ^h	73.3	71.80	3.13 ^h
6''	18.2	17.77	1.59 d (6.0)	62.4	62.04	4.17/4.39 ^h	18.4	17.79	1.12 d (6.0)
	Xyl			Xyl II					
1'''	105.3	104.67	4.85 d (7.0)	105.3	104.84	5.03 d (8.0)			
2'''	72.1	70.51	4.12 ^h	73.2	73.10	3.94 ^h			
3'''	88.2	87.09	4.26 ^h	87.7	87.99	4.15 ^h			
4'''	69.8	70.12	3.76 ^h	69.1	69.01	3.97 ^h			
5'''	66.8	67.85	4.68/5.02 ^h	66.4	66.45	3.52/4.13 ^h			
	MeGlc			MeGlo	c I				
1''''	105.2	105.59	5.27 d (7.5)	105.3	105.64	5.20 d (7.0)			
2''''	75.2	74.69	4.22 ^h	75.0	75.00	3.93 ^h			
3''''	87.8	87.99	3.66 ^h	87.7	87.82	3.65 ^h			
4''''	69.3	70.51	4.12 ^h	70.8	70.49	4.06 ^h			
5''''	78.5	78.29	3.90 ^h	78.05	78.18	3.90 ^h			
6''''	62.5	62.08	4.23/4.43 ^h	62.4	62.17	4.17/4.39 ^h			
3''''-OMe	60.9	60.79	3.82 s	60.4	60.75	3.80 s			
				Glc II					
1'''''				102.9	102.76	4.94 d (7.0)			
2'''''				73.2	73.57	3.94 ⁿ			
3'''''				88.1	87.51	4.00 ⁿ			
4'''''				69.9	69.94	4.00 ⁿ			
5'''''				78.05	78.18	3.85 ^h			
6'''''				62.4	61.15	4.34/4.51 ⁿ			
				MeGlc	Π				
1'''''				105.3	105.55	5.17 d (7.0)			
2'''''				75.0	75.00	3.93 ⁿ			
3'''''				87.7	87.90	3.65 "			
4'''''				70.8	70.57	4.06 ⁿ			
5'''''				78.05	78.18	3.90 ⁿ			
6'''''				62.4	62.17	4.17/4.39 ^h			
3'''''-OMe				60.6	60.72	3.81 s			

T 11 A	1 T T T T	1130 17	(D 1 . C	.1	• • •		1 . 1	1
Table 2.	H-NMR	and C-N	MR data to	r the sugar	moteties of	· I-3 and	d reported	compounds
1 0010 2.	11 1 (1)11(in autu 10	i ine sugu	moreties of	Louin	areported	compounds

^a $\delta_{\rm C}$ of neothyonidioside [5], ^brecorded in pyridine- d_5 , ^c125 MHz, ^d500 MHz, ^e $\delta_{\rm C}$ of stichoposide D [8], ^f $\delta_{\rm C}$ of holothurin B [7], ^grecorded in DMSO- d_6 , ^hoverlapped signals.

Thus, **1** was identified as neothyonidioside. However, based on 2D-NMR experiments, the reported 13 C-NMR data at C-21 and C-27 of neothyonidioside [5] must be reversed as shown in the table 1.

Compounds 2 and 3 were elucidated as stichoposide D [8] and holothurin B [7] by an agreement of their ¹³C-NMR data with the reported values (tables 1 and 2) and combination with 2D-NMR data. Among isolated compounds, 1 was isolated from *S. chloronotus* for the first time.

Acknowledgement. This work was financially supported by MOST and Vietnam Academy of Science and Technology, code: VAST.TĐ.ĐAB.03/13-15.

REFERENCES

- F. X. Cui, C. H. Xue, Z. J. Li, Y. Q. Zhang, P. Dong, X. Y. Fu, X. Gao. *Characterization and subunit* composition of collagen from the body wall of sea cucumber Stichopus japonicus, Food Chemistry, 100, 1120-1125 (2007).
- I. Kitagawa, M. Kobayashi, T. Inamoto, T. Yasuzawa, Y. Kyogoku, M. Kido. Stichlorogenol and Dehydrostichlorogenol, Genuine aglycones of stichlorosides A₁, B₁, C₁ and A₂, B₂, C₂, from the sea cucumber Stichopus chloronotus (Brandt), Chemical & Pharmaceutical Bulletin, **29(4)**, 1189-1192 (1981).
- 3. I. Kitagawa, M. Kobayashi, T. Inamoto, T. Yasuzawa, Y. Kyogoku. *The structures of six antifungal*

oligoglycosides, stichlorosides A_1 , A_2 , B_1 , B_2 , C_1 , and C_2 from the sea cucumber Stichopus chloronotus (Brandt), Chemical & Pharmaceutical Bulletin, **29(8)**, 2387-2391 (1981).

- 4. V. A. Stonik, G. B. Elyakov. *Secondary metabolites from Echinoderms as chemotaxonomic markers*, Bioorganic Marine Chemistry, **2**, 43-86 (1988).
- M. B. Zurita, A. Ahond, C. Poupat, P. Potier, J. L. Menou. Invertébrés marins du Lagon Néo-Calédonien, VII. Étude structurale d'un nouveau saponoside sulfaté extrait de l'Holothurie, Neothyonidium magnum, Journal of Natural Products, 49(5), 809-813 (1986).
- I. I. Mal'tsev, V. A. Stonik, A. I. Kalinovskii. Stichoposide E - A new triterpene glycoside from holothurians of the family Stichopodidae, Chemistry of Natural Compounds, 19(3), 292-295 (1983).
- P. Radhika, V. Anjaneyulu, P. V. S. Rao, T. N. Makarieva, A. I. Kalinovosky. *Chemical exemination* of the echinoderms of Indian ocean: The triterpene glycosides of the sea cucumbers: Holothuria nobilis, Bohadschia aff. tenuissima and Actinopyga mauritana from Lakshadweep, Andaman and Nicobar Islands, Indian Journal of Chemistry, **41B(6)**, 1276-1282 (2002).
- 8. V. U. Ahmad, B. A. Spectroscopic data of saponins: The triterpenoid glycosides, New York: CRC Press; 2000: 439-440.
- 9. V. I. Kalinin, A. S. Silchenko, S. A. Avilov, V. A. Stonik, A. V. Smirnov. Sea cucumbers triterpene glycosides, the recent progress in structural elucidation and chemotaxonomy. Physical Review, 4, 221-236 (2005).

Corresponding author: Nguyen Xuan Cuong

Institute of Marine Biochemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam E-mail: cuongnx@imbc.vast.vn.