Flavonoid glycosides from Viscum album

Vu Kim Thu¹, Nguyen Thi Kim Thoa¹, Phan Van Kiem^{2*}

¹Faculty of Basic Science, Hanoi University of Mining and Geology (HUMG) ²Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST)

Received 17 March 2016; Accepted for publication 12 August 2016

Abstract

Using combined chromatographic methods, four flavonoid glycosides, (2S)-homoeriodictyol-7-O- β -D-apiofuranosyl-(1 \rightarrow 2)-O- β -D-glucopyranoside (1), (2S)-5-hydroxy-7,3'-dimethoxyflavanone-4'-O- β -D-apiofuranosyl-(1 \rightarrow 2)-O- β -D-glucopyranoside (2), homoflavoyadorinin-B (3), and 3'-methoxyapiin (4) were isolated from the methanol extract of the leaves and twigs of *Viscum album*. Their structures were elucidated by 1D- and 2D-NMR spectra and in comparison with those reported in the literature.

Keywords. Viscum album, flavonoid glycoside.

1. INTRODUCTION

Viscum album L. var. *meridianum* Dans. is a hemiparasitic shrub. It has been used as a remedy in traditional oriental medicine to treat swell spleen, wound, tumour and sore ears [1]. *V. album* exerts several biological effects such as antitumor, anticancer [2, 3], and anti-inflammatory activities [4]. It is well established that the extract of *V. album* inhibited tumour angiogenesis and metastasis of haematogenous and non-haematogenous tumour cells in mice [5]. Chemical investigation of *V. album* proved the presence of flavonoids [6], lignans, phenylpropanoids [7], and triterpenes [8]. This paper reported the isolation and structure elucidation of four flavonoid glycosides from the methanol extract of the leaves and twigs of *V. album*.

2. MATERIAL AND METHODS

2.1. Plant materials

The leaves and twigs of *V. album* were collected in Cucphuong, Ninhbinh, Vietnam in October, 2012 and identified by Prof. Dr. Ninh Khac Ban, Institute of Marine Biochemistry, VAST. A voucher specimen (TG1012) was deposited at the Herbarium of the Institute of Marine Biochemistry.

2.2. General experimental procedures

All NMR spectra were on a Bruker AM400 FT-NMR spectrometer (400 MHz for ¹H-NMR and 100 MHz for ¹³C-NMR), and chemical shifts (δ) are

reported in ppm using TMS as an internal standard. Column chromatography was performed on silica gel (Kieselgel 60, 70-230 mesh and 230-400 mesh, Merck) and RP-18 resins. Thin layer chromatography was performed on DC Alufolien Kieselgel 60 F254 (Merck) or RP-18 F_{254s} (Merck) plates. Compounds were visualized by spraying with aqueous 10 % H_2SO_4 and heating for 5 minutes.

2.3. Extraction and isolation

The dried leaves and twigs of V. album (2.5 kg) were extracted with hot MeOH three times $(3 \times 5 L)$ under reflux for 12 h to yield 320 g extract after evaporation of the solvent. This extract was suspended in H₂O and successively partitioned with CHCl₃ and EtOAc to yield the CHCl₃ (VA1, 45.0 g), EtOAc (VA2, 9.0 g), and H₂O (VA3, 260.0 g) extracts after removal of the solvents in vacuo. The VA2 fraction was chromatographed on a silica gel column eluting with a gradient of CHCl₃-MeOH $(10:1\rightarrow 2:1, v/v)$ to give four fractions, VA2A-VA2D. The VA2C fraction was chromatographed on a Sephadex LH-20 column and eluting with MeOH to give compounds 3 (20.0 mg) and 4 (4.1 mg). The VA3 fraction (260 g) was chromatographed on a Diaion HP-20P column eluting with H₂O containing increasing concentrations of MeOH (0, 25, 50, 75, and 100 %, v/v) to yield five sub-fractions, VA3A (120.0 g), VA3B (12.0 g), VA3C (14.0 g), VA3D (20.0 g), and VA3E (15.0 g). The VA3D fraction was chromatographed on a silica gel column eluting with gradient of CHCl₃-MeOH (10:1 \rightarrow 2:1, v/v) to give five fractions, VA3D1-VA3D5. The VA3D2 fraction was chromatographed on a RP-18

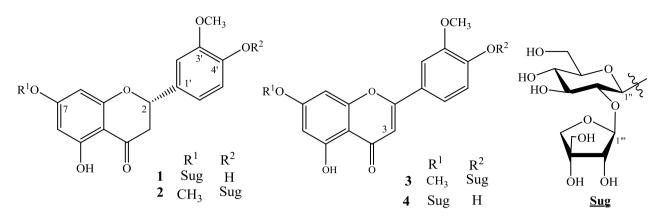


Figure 1: The chemical structures of compounds 1-4

column eluting with MeOH-H₂O (1:1, v/v) to yield **2** (9.0 mg). The VA3D3 fraction was chromatographed on a RP-18 column eluting with MeOH - H₂O (1:1, v/v) to yield compound **1** (180.0 mg).

(2S)-Homoeriodictyol-7-O-β-D-apiofuranosyl-

(1→2)-O-β-D-glucopyranoside (1): yellowish powder; mp 143-146 °C; $[\alpha]_D^{25}$ = -46.0 (*c*, 0.1, CH₃OH); C₂₇H₃₂O₁₅, ESI-MS *m*/*z* 597 [M+H]⁺; ¹Hand ¹³C-NMR data, see table 1.

(2*S*)-5-Hydroxy-7,3'-dimethoxyflavanone-4'-O- β -D-apiofuranosyl-(1 \rightarrow 2)-O- β -D-glucopyranoside

(2): yellowish powder; mp 219-221 °C; $[\alpha]_D^{25} = -85.0$ (*c*, 0.1, MeOH); C₂₈H₃₄O₁₅, ESI-MS *m*/*z* 611 [M+H]⁺; ¹H- and ¹³C-NMR data, see table 1.

Homoflavoyadorinin-B (3): yellowish powder; mp 217-220 °C; $[\alpha]_D^{25} = -13.0$ (*c* 0.1, CH₃OH); C₂₈H₃₂O₁₅, ESI-MS *m*/*z* 609 [M+H]⁺; ¹H- and ¹³C-NMR data, see table 1.

3'-Methoxyapiin (**4**): yellowish powder; mp 200-202 °C; $[\alpha]_D^{25} = -38.0$ (*c* 0.1, CH₃OH); C₂₇H₃₀O₁₅, ESI-MS *m*/*z* 595 [M+H]⁺; ¹H- and ¹³C-NMR data, see table 1.

3. RESULTS AND DISCUSSION

Compound **1** (figure 1) was yielded as a yellowish powder. The ¹H-NMR of **1** showed the signals of one oxymethine proton at $\delta_{\rm H}$ 5.33 (1H, dd, J = 2.0, 12.5 Hz), three protons of ABX aromatic system at $\delta_{\rm H}$ 7.05 (1H, s), 6.81 (1H, d, J = 8.0 Hz), and 6.90 (1H, d, J = 8.0 Hz), suggested the presence of a flavanone moiety; two anomeric protons at $\delta_{\rm H}$ 5.00 (1H, d, J = 7.6 Hz) and 5.42 (1H, d, J = 2.0 Hz), confirmed two sugar moieties, and one methoxy group at $\delta_{\rm H}$ 3.86 (3H, s). The ¹³C-NMR and

DEPT spectra displayed the signals of 27 carbons, including one methoxy, four methylene, thirteen methine, and nine quaternary carbons. Of which, 16 carbons were assigned to a flavanone with a methoxy group and 11 carbons to two sugar units. The HMBC correlations between methoxy protons $(\delta_H 3.86)$ and C-3' $(\delta_C 149.04)$ indicated the methoxy group was located at C-3'. The HMBC correlations between glc H-1" ($\delta_{\rm H}$ 5.00) and C-7 ($\delta_{\rm C}$ 166.70), api H-1''' (δ_H 5.42) and glc C-2'' (δ_C 78.53), and between glc H-2" ($\delta_{\rm H}$ 3.61) and api C-1"" ($\delta_{\rm C}$ 110.83) indicated the linkage of sugar moiety as $O-\beta$ -Dapiofuranosyl $(1\rightarrow 2)$ -O- β -D-glucopyranoside and this sugar linkage was connected to C-7 of flavanone (Figure 2). All NMR assignments of 1 were confirmed by detailed analyses of HSQC and HMBC spectra (table 1), which are in good agreement with those reported in the literature [6]. Thus compound 1 was identified as (2S)homoeriodictyol-7-O- β -D-apiofuranosyl-(1 \rightarrow 2)-O- β -D-glucopyranoside.

The NMR spectra of 2 were similar to those of 1 with the presence of a flavanone skeleton, two sugar moieties but two methoxy groups. The HMBC correlations between methoxy group at $\delta_{\rm H}$ 3.79 (3H, s) and C-7 ($\delta_{\rm C}$ 167.41) confirmed the location of the methoxy group at C-7 (figure 1). The observed HMBC correlations between glc H-1" ($\delta_{\rm H}$ 4.98) and C-4' ($\delta_{\rm C}$ 146.51) indicated the position of sugar moiety at C-4' of the flavanone. The sugar moities were also confirmed by the good agreement of ${}^{13}C$ -NMR chemical shifts for sugar moieties previously reported in some flavonoid glycosides from V. album [6, 9]. Based on the evidence above and in comparison with those reported in the literature [10], compound 2 was determined to be (2S)-5-hydroxy-7,3'-dimethoxyflavanone-4'-O- β -D-apiofuranosyl- $(1\rightarrow 2)$ -*O*- β -D-glucopyranoside.

VJC,	
54(4)	
2016	

Flavonoid glycosides from Viscum album.

Pos.		1			2			3		4	
1 05.	$\delta_{C}^{\#}$		$\delta_{\rm H}^{a}$ (<i>J</i> in Hz)	δ_C ^{\$}	$\frac{2}{\delta_{c}^{b}}$	$\delta_{\rm H}^{b}$ (<i>J</i> in Hz)	δ_{C}^{*}	<u>δα^b δ</u>	$\delta_{\rm H}^{\rm b}$ (J in Hz)		$\delta_{\rm H}^{\ a}$ (<i>J</i> in Hz)
Aglycon	UC	UC		UC	UC	$O_{\rm H}$ (J III IIZ)	UC			00	
2	78.8	80.86	5.33 (dd, 2.0, 12.5)	78.5	78 57	5.53 (d, 12.5)	163.4	163.46 -	_	166.71	_
3	42.2		2.70 (m)	42.0		2.78 (d, 12.5)	103.4	104.29			6.59 (s)
5	42.2	44.27	3.14 (m)	42.0	42.04	3.36 (m)	104.2	104.29	7.03 (8)	104.30	0.39 (8)
4	197.1	198.51	. ,	196.6	196.72	· · ·	181.9	182.09 -		184.07	
4 5	162.8	198.31		190.0	190.72		161.9	162.09 -		162.91	
6	95.2		- 6.16 (s)	94.6		- 6.15 (s)	98.0		- 6.35 (d, 2.4)		- 6.37 (s)
0 7		166.70		94.0 167.4	94.08 167.41	· · /	98.0 165.2	98.09 C 165.24 -		164.68	
	164.9										
8	96.4		6.13 (s)	93.7		6.09 (s)	92.7		6.81 (d, 2.4)		6.73 (s)
9	162.7	164.49		162.7	162.72		157.2	157.32 -		158.99	
10	103.2	104.84		102.5	102.55		104.7	104.80 -		107.10	
1'	129.1	131.44		131.9	131.95		123.9	123.96 -		123.52	
2'	111.2		7.05 (s)	111.2		7.16 (s)	110.1		7.61 (d, 2.4)		7.42 (s)
3'	147.5	149.04		148.8	148.77		149.6	149.09 -		149.55	
4′	147.0	148.14		146.5	146.51		149.0	149.65 -		152.33	
5'			6.81 (d, 8.0)	114.9		7.07 (d, 8.0)	114.8		7.21 (d, 8.4)		6.85 (d, 8.0)
6'	119.7	120.70	6.90 (d, 8.0)	119.0		7.00 (d, 8.0)	119.7		7.66 (dd, 2.4, 8.4)	122.00	7.46 (d, 8.0)
7-OMe				55.7		3.79 (s)	55.9	59.99 3			
3'-OMe	55.6	56.48	3.86 (s)	55.8	55.86	3.78 (s)	56.0	56.11 3	3.89 (s)	56.74	3.87 (s)
4' or 7- <i>O</i> -Gl											
1″	97.7	99.67	5.00 (d, 7.6)	98.4	98.34	4.98 (d, 7.5)	98.0	97.95 5	5.14 (d, 8.4)	100.27	5.06 (d, 7.5)
2″	76.8	78.53	3.61*	77.1	77.18	3.67 (m)	77.0	77.06	3.60*	78.77	3.67*
3″	75.7	78.30	3.60*	75.0	74.91	3.60*	74.8	74.75	3.45*	78.47	3.62*
4″	69.7	71.05	3.40*	69.9	69.97	3.41*	69.9	69.94 3	3.20 (m)	71.32	3.40 (t, 8.5)
5″	76.6	78.12	3.41*	76.8	76.83	3.46*	77.1	77.23	3.51 (m)	78.35	3.53*
6″	60.4	62.22	3.68 (m)	60.6	60.60	3.55 (m)	60.5	60.60	3.46*	62.46	3.69 (dd, 5.0, 12.0)
			3.85 (m)			3.67 (m)			3.71 (dd, 5.6, 10.0)		3.92 (d, 12.0)
2"-O-Apio											
1‴	108.6	110.83	5.42 (d, 2.0)	108.2	108.28	5. 42 (br s)	108.3	108.36 5	5.44 (s)	110.91	5.35 (s)
2‴	76.0		3.95 (d, 2.0)	76.0		3.79 (s)	76.0	76.04			3.95 (s)
3‴	79.1	80.70		79.9	79.29		79.3	79.44 -		80.69	
4‴	73.8		3.77 (d, 9.6)	73.8		3.59 (d, 9.5)	73.0		3.62 (d, 9.6)		3.81 (d, 10.0)
-			3.96 (d, 9.6)		0	4.06 (d, 9.5)			4.07 (d, 9.6)		4.03 (d, 10.0)
5‴	64.1	65.88	3.51 (s)	64.4	64.45	3.30 (s)	64.4	64.53		65.89	3.53 (s)

Table 1: The ¹H- and ¹³C-NMR data for compounds **1-4**

 $\frac{5'''}{^{\text{ecorded in CD}_3\text{OD}, ^{\text{b}}\text{DMSO-d}_6, ^{\text{s}}\text{overlapped signals}, ^{\#}\delta_{\text{C}}\text{ of }(2S)\text{-homoeriodictyol-7-}O-\beta\text{-}\text{-}\text{apiofuranosyl-}(1\rightarrow 2)-O-\beta\text{-}\text{-}\text{glucopyranoside [6]}, ^{\$}\delta_{\text{C}}\text{ of }(2S)\text{-}\text{bydroxy-7,3'-dimethoxyflavanone-4'-}O-\beta\text{-}\text{D-apiofuranosyl-}(1\rightarrow 2)-O-\beta\text{-}\text{D-glucopyranoside [10]}, ^{\#}\delta_{\text{C}}\text{ of homoflavoyadorinin-B [6]}.$

445

¹H-NMR spectrum of **3** showed characteristic flavone proton signals with three protons at δ_H 7.03 (1H, s, H-3), 6.35 (1H, d, J = 2.4 Hz, H-6), 6.81 (1H, d, J = 2.4 Hz, H-8), and three protons of ABX aromatic system at $\delta_{\rm H}$ 7.61 (1H, d, J = 2.4 Hz, H-2'), 7.21 (1H, d, J = 8.4 Hz, H-5'), and 7.66 (1H, dd, J = 2.4, 8.4 Hz, H-6'), two anomeric protons of sugar units at 5.14 (1H, d, J = 8.4 Hz) and 5.44 (1H, s), and two methoxy groups at δ_H 3.86 and 3.89 (each 3H). The ¹³C-NMR data showed the presence of a D-glucopyranose moiety and a D-apiofuranose moiety with the chemical shifts of anomeric carbons at $\delta_{\rm C}$ 97.95 (C-1") and 108.36 (C-1""). The coupling constant of H-1" and H-2" (J = 8.4 Hz) indicated the β configuration for the glucopyranose moiety. The HMBC correlations from methoxy groups at $\delta_{\rm H}$ 3.86 and $\delta_{\rm H}$ 3.89 to C-7 (165.24), C-3' (149.09), respectively, proved the locations of two methoxy groups at C-7 and C-3'. Moreover, the HMBC correlations between glc H-1" ($\delta_{\rm H}$ 5.14) and C-4' ($\delta_{\rm C}$ 149.65); api H-1"" ($\delta_{\rm H}$ 5.44) and glc C-2" ($\delta_{\rm C}$ 77.06); between glc H-2" ($\delta_{\rm H}$ 3.60) and api C-1"" ($\delta_{\rm C}$ 108.36) indicated the sugar moiety of **3** to be [*O*- β -D-apiofuranosyl (1 \rightarrow 2)-*O*- β -D-glucopyranoside] and its location at C-4'. All NMR assignments of **3** were confirmed by detailed analyses of HSQC and HMBC spectra, which are in good agreement with those reported in the literature [6]. Thus compound **3** was identified as homoflavoyadorinin-B.

Compound 4 was yielded as yellowish powder and its molecular formula was determined as $C_{27}H_{30}O_{15}$ by the ESI-MS at m/z 595 [M+H]⁺ and ¹³C-NMR data. Analysis the NMR spectra of 4 indicated that the structure of 4 was very similar to those of 3 except for the position of sugar linkage and methoxy group. The HMBC correlation from

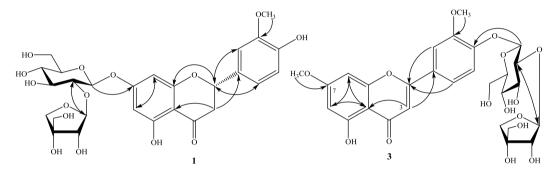


Figure 2: The key HMBC correlations of compounds 1 and 3

methoxy group ($\delta_{\rm H}$ 3.87) to C-3' (149.55) proved the location of methoxy group at C-3'. Moreover, the observed HMBC correlations between glc H-1" ($\delta_{\rm H}$ 5.06) and C-7 ($\delta_{\rm C}$ 164.68), between api H-1"" ($\delta_{\rm H}$ 5.35) and glc C-2" ($\delta_{\rm C}$ 78.77), and between glc H-2" ($\delta_{\rm H}$ 3.67) and api C-1"" ($\delta_{\rm C}$ 110.91) indicated the sequence of sugar linkages of **4** and the position of sugar moiety at C-7 of the flavone. From all the above evidence, the structure of **4** was determined as 3'-methoxyapiin [11].

REFERENCES

- 1. V. V. Chi. *Dictionary of Medicinal Plants in Vietnam*. Medical Publishing House, Hanoi, 1019-1020 (2012).
- J. D. V. Huyen, S. Delignat, J. Bayry, M. D. Kazatchkine, P. Bruneval, A. Nicoletti, S. V. Kaveri. Interleukin-12 is associated with the in vivo antitumor effect of mistletoe extracts in B16 mouse melanoma. Cancer Letters, 243, 32-37 (2006).
- 3. A. Büssing, K. Suzart, J. Bergmann, U. Pfüller, M.

Schietzel, K. Schweizer. Induction of apoptosis in human lymphocytes treated with Viscum album L. is mediated by the mistletoe lectins. Cancer Letters, **99**, 59-72 (1996).

- V. Lavastre, H. Cavalli, C. Ratthe, D. Girard. Antiinflammatory effect of Viscum album agglutinin-I (VAA-I): induction of apoptosis in activated neutrophils and inhibition of lipopolysaccharideinduced neutrophilic inflammation in vivo. Clinical & Experimental Immunology 137, 272-278 (2004).
- T. J. Yoon, Y. C. Yoo, O. B. Choi, M. S. Do, T. B. Kang, S. W. Lee, I. Azuma, J. B. Kim. Inhibitory effect of Korean mistletoe (Viscum album coloratum) extract on tumour angiogenesis and metastasis of haematogenous and non-hematogenous tumor cells in mice. Cancer Letters, 97, 83-91 (1995).
- T. Fukunaga, I. Kajikawa, K. Nishiya, K. Takeya, H. Itokawa. Studies on the constituents of the Japanese mistletoe, Viscum album L. var. coloratum OHWI grown on different host trees. Chemical and Pharmaceutical Bulletin, 37, 1300-1303 (1989).
- 7. H. Wagner, B. Feil, O. Seligmann, J. Petricic, Z. Kalogjera. *Phenylpropanes and lignans of Viscum*

VJC, 54(4) 2016

album cardioactive drugs V, Planta Medica, **52**, 102-104 (1986).

- S. Z. Choi, H. C. Kwon, A. K. Chung, S. U. Choi, K. R. Kim, S. M. Lee, S. N. Pyo, K. Lee. *Triterpenes* and phenolic constituents from Viscum album L., Yakhak Hoechi, 45, 591-598 (2001).
- 9. M. I. Choudhary, S. Maher, A. Begum, A. Abbaskhan, S. Ali, A. Khan, R. Shafique ur, R. Atta ur. *Characterization and antiglycation activity of phenolic constituents from Viscum album (European*

Corresponding author: Phan Van Kiem

Institute of Marine Biochemistry Vietnam Academy of Science and Technology 18, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam E-mail: phankiem@yahoo.com.

Flavonoid glycosides from Viscum album.

mistletoe), Chemical and Pharmaceutical Bulletin, **58**, 980-982 (2010).

- C. J. Chou, H. C. Ko, L. C. Lin. *Flavonoid glycosides* from Viscum alniformosanae, Journal of Natural Products, 62, 1421-1422 (1999).
- 11. R. A. Momin, M. G. Nair. Antioxidant, cyclooxygenase and topoisomerase inhibitory compounds from Apium graveolens Linn. seeds, Phytomedicine, 9, 312-318 (2002).