Synthesis of Ag-TiO₂ nanomaterial for treatment of organic pollutants under visible light

Nguyen Thi Dieu Cam^{1*}, Mai Hung Thanh Tung²

¹Quy Nhon University ²Ho Chi Minh City University of Food Industry Received 14 September 2016; Accepted for publication 11 April 2017

Abstract

In this study, the sol-gel synthesis method was employed for the preparation of silver-doped TiO₂ nanomaterial from potassium fluorotitanate and silver nitrate. The silver can be incorporated by direct calcination of the sol-gel material decomposing silver nitrate to silver. The visible light absorption ability of Ag- TiO₂ nanoparticles was investigated by means of UV-Vis measurement. Based on the UV-Vis spectra, the absorption in the visible light of the Ag-TiO₂ was found to be improved and was shifted to longer wavelength. The XPS spectra indicated that the elements detected were titanium, oxygen, and silver. Titanium and oxygen presented as Ti⁴⁺ and O²⁻ and silver Ag existed in Ag (0) form. It is attributed to the fact that the silver is homogeneously dispersed throughout the material. The experimental results showed that the photocatalytic efficiency of Ag-TiO₂ was better than prepared TiO₂ under the same conditions for the photodegradation of methylene blue.

Keywords. Potassium fluorotitanate, titanium dioxide, silver, photocatalysis, visible light.

1. INTRODUCTION

In the last decades, TiO₂ materials are most extensively studied owing to their stability, nontoxicity, and low cost. However, TiO₂ only exhibits photocatalytic activity under UV irradiation, because of its large band gap energy (3.2 eV) and fast recombination rate of photogenerated electron-hole pairs [1-5]. These drawbacks restrict the use of visible light or sunlight as the radiation source for photocatalysis of TiO₂. The development of titaniabased photocatalysts activated by visible light remains a great challenge. Non-metal doping of TiO₂ films and powders with elements like nitrogen, sulfur, carbon, and fluorine has been investigated in order to red-shift the absorbance to be achieved [5-8] or metal impurity in the TiO₂ lattice or to couple with lower band gap semiconductor [9-11]. The role of transition metal ion in TiO₂ is that transition metal ion offers a way to trap the charge carrier thus improving the efficiency of catalyst. Noble metal doped or deposited on TiO₂ shows enhanced photocatalytic activity of TiO₂ [1-3, 12, 13]. They enhance the electron hole separation by acting as electron traps, extend the light absorption into the visible range and enhance the surface electron excitation by plasmon resonance excited by visible light. Among the noble metals, silver has been attracted by many researchers, because of their novel effects on the improvement of photoactivity of semiconductor photocatalysis. Silver could be doped into TiO_2 using chemical reduction of silver ion on TiO_2 nanoparticles, thermal deposition, sol-gel method,... [14-16].

In the present work, we use a simple approach for the synthesis of Ag-doped TiO_2 photocatalysts by sol-gel method by controlled hydrolysis of K_2TiF_6 and AgNO₃ and investigate the comparative photocatalytic activity of TiO_2 and Ag-doped TiO_2 for the degradation of methylene blue as a model pollutant under visible light.

2. EXPERIMENTAL

2.1. Chemicals and characterization of materials

The ilmenite used in the present study was supplied from Binh Dinh Minerals Joint Stock Company, Vietnam, HF 40 wt.%, NH₃ 25 wt.%, KCl (China) and silver nitrate (Merck).

Material surfaces were characterized by scanning electronic microscopy (SEM) (JEOL JSM-6500F). Chemical composition of catalysts was revealed by Energy-dispersive X-ray spectroscopy (EDS) (Hitachi S-4700). Light absorption capability was evaluated by UV-Vis absorption spectroscopy (3101PC Shimadzu). X-rav photoelectron spectroscopy (XPS) spectra of the synthesized Ag-TiO₂ photocatalyst were obtained using a Thermo Fisher K-Alpha X-ray Photoelectron Spectrometer system. The Gaussian multi-peak shapes were applied to fit the Ag 3d and Ti 2p peaks in the obtained XPS spectra to determine the elemental states of the silver and titanium in the synthesized photocatalysts. Methylene blue concentration was determined by spectrometric method at 664 nm (UV 1800, Shimadzu).

2.2. Synthesis of Ag-TiO₂ catalyst

Ag-TiO₂ powders have been prepared by sol-gel route. K_2TiF_6 was used as titanium source. 10 g K_2TiF_6 were dissolved in deionized water under stirring at room temperature. After that, the reactor was heated under continuous stirring. When the temperature reached up to 80 °C, kept stable and a certain amount of 3.5 M NH₃. Then, silver nitrate solution was added to the above mixture dropwise. The sols were stirred in closed beakers at room temperature for 24 hours for completion of the hydrolysis process. The obtained material after extensive washing was dried at 80 °C and calcinated at 550 °C in 5 hours (heating rate of 5 °C for per minute).

 TiO_2 catalyst was synthesized in the same conditions without using silver nitrate solution.

2.3. Photocatalytic experiment

Photocatalysis experiments were carried out with an aqueous solution of methylene blue (10 mg/L) using solar/visible/filament lamp light (having an output of 60 W). 0.1 g of each sample was added to 200 mL of methylene blue solution. The above suspension was stirred for 2 hours in the dark to equilibrate and eliminate any error due to the initial adsorption effect. After the reaction time was 6 hours, 5 mL samples were taken and centrifuged at 6000 rpm for 20 min. Then, 1.5 mL of the supernatant was put in a disposable cuvette and analyzed. These aliquots were then analyzed using a UV-Vis spectrometer to measure their degradation properties.

3. RESULTS AND DISCUSSION

3.1. Materials characterization

To prove that silver is present, EDS analysis was employed. The EDS spectrum of Ag-TiO₂ material was shown in Fig. 1.

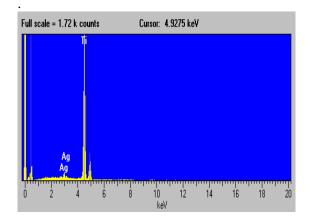
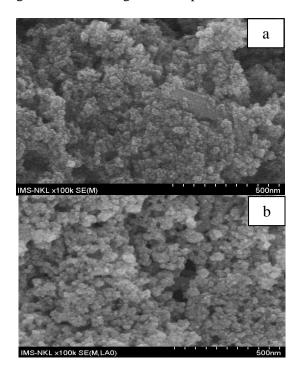
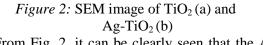




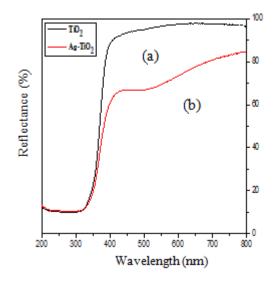
Figure 1: EDS spectrum of Ag-TiO₂

It can be seen that TiO_2 modified by silver contained peaks of Ti, O and Ag elements; there are no peaks of other elements on the EDS spectrum. This proved the occurrence of silver in Ag-TiO₂ sample.

The samples were characterized by SEM to reveal their material surfaces. Fig. 2 shows the SEM images of TiO_2 and Ag- TiO_2 samples.

From Fig. 2, it can be clearly seen that the Ag- TiO_2 samples exhibited a unique spherical structure

as compared to TiO_2 . It can also be seen that the particle size of Ag-TiO₂ is larger than TiO_2 , indicating that the size of Ag-TiO₂ can be regulated by silver during the catalyst preparation.


The diffuse reflectance spectra of the samples were used to assess the absorption of the photocatalysts in the UV-Vis region.

From diffuse reflectance spectra (Fig. 3), the absorption of $Ag-TiO_2$ is enhanced distinctly in both UV and visible light region compared to that of pure TiO_2 . This suggests that the introduction of the Ag can possibly cause modifications in the fundamental process of electron-hole pair formation during irradiation.

In order to examine the chemical states of elements involved in the as-prepared samples, XPS measurements were performed.

Fig. 4a illustrates XPS spectra of Ag-TiO₂ samples. The XPS spectra show that Ag-TiO₂ sample contained peaks of Ti and O elements, which can be attributed to composition of TiO₂. It can be seen that TiO₂ modified by silver contained peaks of Ag elements. This proves that the occurrence of Ag in Ag-TiO₂ sample.

From the XPS spectra of O 1s in Fig. 4b, two peaks at the binding energy of 529.8 and 531.5 eV could be assigned for the O^{2-} in TiO₂ and the -OH group on the surface of samples, respectively.

Figure 3: Diffuse reflectance spectra of TiO_2 (a) and Ag-TiO₂ (b)

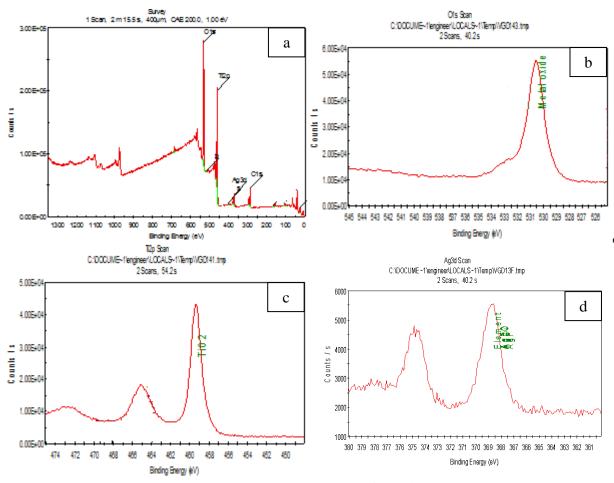


Figure 4: XPS spectra of Ag-TiO₂

From Fig. 4c, Ti 2p peaks can be observed at binding energy of 464.1 (Ti $2p_{1/2}$) and 458.4 eV (Ti $2p_{3/2}$). This shows that there is no Ti³⁺ in the sample; all Ti existed in Ti⁴⁺ form. For silver (Fig. 4d), there are two peaks at about 374 and 368 eV, which can be attributed to Ag $3d_{3/2}$ and Ag $3d_{5/2}$, respectively. All Ag was in metallic form (Ag (0)), which means that AgNO₃ was reduced. Results obtained from this method agree with reports of other authors [16, 17].

XPS method proves that silver is in form of metallic silver (Ag (0)). Based on literature study, the radius of Ag^+ is 126 pm while the radius of Ti^{4+} is only 64 pm. The difference in radius makes it impossible for silver to substitute titanium in its lattice. Therefore, doping silver cannot modify band gap energy of titania, and it might have no effect on catalytic efficiency on methylene blue degradation. However, in case of doping silver into titania, silver can play a role as intermediate step to facilitate electron transfer. Electrons transfer from conduction band of titania to silver cluster, then to oxygen, making the process much easier than without silver. Reactions underlying this process are shown below.

$$e^{-} + Ag_n \rightarrow Ag_n^{-}$$

 $Ag_n^{-} + O_2 \rightarrow O_2^{-} + Ag_n^{-}$

This has amazingly high capacity of degrading methylene blue of Ag-TiO₂; it reaches near 93.06 % conversion rate after 6 hours under solar light, much higher than TiO₂ (table 1).

3.2. Photocatalytic experiments

The experiments were carried out silmutaneously on $Ag-TiO_2$ and TiO_2 with different light sources (visible light, filament lamp and solar light). All other conditions were the same. Results are shown in table 1.

Table 1: Conversion of methylene blue using TiO₂ or Ag-TiO₂ under different light sources

Catalysts	Conversion (%)		
	Visible light	Filament lamp	Solar light
TiO ₂	20.15	30.25	75.32
Ag-TiO ₂	34.87	55.67	93.06

Results in table 1 indicate that efficiency of Ag-TiO₂ in methylene blue degradation is higher than TiO₂ under all light sources, which means that TiO₂ modified by silver can improve catalytic activity of TiO₂ material. The results show that after 6 hours, methylene blue removal efficiency on Ag-

 TiO_2 reaches 93.06 % when using solar as light source, while it is only 55.67 % if experiments were carried out with filament lamp light. This observation is understandable because photon in solar light is stronger filament lamp light.

It is expected that Ag-TiO₂ photocatalyst would be activated under visible light. However, results in Tab. 1 indicate that efficiency of Ag-TiO₂ in methylene blue degradation under visible light source is just slightly higher than that in dark condition (34.87 % for visible light and 15.34 % for the dark). This observation is understandable because photon in visible region is not powerful enough to excite electrons in valence band to conduction band. A possible explanation is that photons in UV region of solar source give energy to electrons in valence band; then these electrons jump to conduction band of TiO2. In presence of silver cluster, surface plasmon surface is created, increasing photocatalytic activity of catalyst under visible light [18].

4. CONCLUSION

Silver doped titania is successfully synthesized from K_2TiF_6 and AgNO₃. The obtained results from XPS indicated that Ag existed as Ag (0), where silver can be deposited on the surface of TiO₂. It is attributed to the fact that the silver is homogeneously dispersed throughout the material leading to its surface plasmon, which increased photocatalytic activity of the catalyst. The obtained experimental results showed that the photocatalytic efficiency of Ag-TiO₂ was better than prepared TiO_2 under the same conditions for the photodegradation of methylene blue.

REFERENCES

- Z. Xiong, H. Wang, N. Xu, H. Li, B. Fang, Y. Zhao, J. Zhang, C. Zheng. *Photocatalytic reduction of CO₂ on Pt²⁺-Pt⁰/TiO₂ nanoparticles under UV/Vis light irradiation: A combination of Pt²⁺ doping and Pt nanoparticles deposition*, International Journal of Hydrogen Energy, **40**, 10049-10062 (2015).
- A. V. Rosario, E. C. Pereira. The role of Pt addition on the photocatalytic activity of TiO₂ nanoparticles: The limit between doping and metallization, Applied Catalysis B: Environmental, 144, 840-845 (2014).
- C. X. Sun, Y. Wang, A. P. Jia, S.X. Chen, M. F. Luo, J. Q. Lu. Gas-phase epoxidation of 3,3,3trifluoropropylene over Au/Cu-TiO₂ catalysts with N₂O as the oxidant, Journal of Catalysis, **312**, 139-151 (2014).

- L. Lin, W. Lin, Y. Zhu, B. Zhao, Y. Xie. *Phosphor*doped titania - A novel photocatalyst active in visible light, Chemistry Letters, 34, 284-285 (2005).
- R. Jaiswal, J. Bharambe, N. Patel, A. Dashora, D.C. Kothari, A. Miotello. *Copper and Nitrogen co-doped TiO*₂ photocatalyst with enhanced optical absorption and catalytic activity, Applied Catalysis B: Environmental, 168-169, 333-341 (2015).
- 6. T. Liu, B. Liu, J. Wang, L. Yang, X. Ma, H. Li, Y. Zhang, S. Yin, T. Sato, T. Sekino, and Y. Wang. Smart window coating based on F-TiO₂- K_xWO_3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance, Sci. Rep., **6**, 27373 27382 (2016).
- T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura. Preparation of S-doped TiO₂ photocatalysts and their photocatalytic activities under visible light, Applied Catalysis A, 1(265), 115-121 (2004).
- 8. T. Tachikawa, S. Tojo, K. Kawai, Masayuki Endo, Mamoru Fujitsuka, Teruhisa Ohno, Kazumoto Nishijima, Zenta Miyamoto and Tetsuro Majima. *Photocatalytic oxidation reactivity of holes in the sulphur-and carbon-doped TiO*₂ *powders studied by time-resolved diffuse reflectance spectroscopy*, Journal of Physical Chemistry B, **50**(108), 19299-19306, (2004).
- 9. X. Chen. S.S. Mao. *Titanium dioxide nanomaterials* synthesis, properties, modifications and applications, Chemical Reviews, **107**, 2891-2959 (2007).
- P.N. Paulino, V.M.M. Salim, N.S. Resende. Zn-Cu promoted TiO₂ photocatalyst for CO₂ reduction with H₂O under UV light, Applied Catalysis B: Environmental, 185, 362-370 (2016).
- R. Jaiswal, N. Patel, A. Dashora, R. Fernandes, M. Yadav, R. Edla, R. S. Varma, D. C. Kothari, B. L. Ahuja, A. Miotello. *Efficient Co-B-codoped TiO*₂

Corresponding author: Nguyen Thi Dieu Cam

photocatalyst for degradation of organic water pollutant under visible light, Applied Catalysis B: Environmental, **183**, 242-253 (2016).

- M. M. Mohamed, M. S. Al-Sharif. Visible light assisted reduction of 4-nitrophenol to 4-aminophenol on Ag/TiO₂ photocatalysts synthesized by hybrid templates, Applied Catalysis B: Environmental, 142-143, 432-441 (2013).
- X. Hu, Q. Zhu, X. Wang, N. Kawazoe, Y. Yang, *Nonmetal-metal-semiconductor-promoted P/Ag/Ag₂O/Ag₃PO₄/TiO₂ photocatalyst with superior photocatalytic activity and stability*, Journal of Materials Chemistry A, 3, 17858-17865 (2015).
- T. Whang, H. Huang, M. Hseih, J. Chen. Laser induced silver nanoparticles on Titanium dioxide for photocatalytic degradation of methylene blue, International Journal of Molecular Sciences, 10, 4707 - 4718, (2009).
- 15. H. Wang, H. Lin, C. Kuo, Y. Cheng, Y. Yeh. Synthesis and photocatalysis of mesoporous anatase TiO_2 powders incorporated Ag nanoparticles, Journal of Physics and Chemistry of Solids, **69**, 633-636 (2008).
- 16. Binyu Yu, Kar Man Leung, Qiuquan Guo, Woon Ming Lau and Jun Yang. Synthesis of Ag-TiO₂ composite nano thin film for antimicrobial application, Nanotechnology, **22**, 115603-115612 (2011).
- P. Falaras, I. M. Arabatzis, T. Stergioulos, M. C. Bernard. *Enhanced activity of silver modified thin-film TiO₂ photocatalysts*, International Journal of Photoenergy, 5, 123-130 (2003).
- 18. J. Panpranot, K. Kontapakdee, P. Praserthdam. *Effect* of TiO_2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO_2 in selective acetylene hydrogenation, Journal of Physical Chemistry B, **110**, 8019-8024 (2006).

Quy Nhon University No. 170, An Duong Vuong, Quy Nhon City, Binh Dinh Province E-mail: nguyenthidieucam@qnu.edu.vn; Telephone number: 0983222831.