PHƯƠNG PHÁP ĐƠN GIẢN ĐIỀU CHẾ BỘT NANO N-TIO₂ CÓ HOAT TÍNH QUANG XÚC TÁC CAO DƯỚI NGUỒN ÁNH SÁNG NHÌN THẦY

Nguyễn Văn Hưng^{1*}, Đặng Thị Thanh Lê²

¹Khoa Hóa học, Trường Đại học Đồng Tháp
²Bộ môn Hóa học, Trường Đại học Giao thông Vận tải Đến Tòa soan 5-6-2013

Abstract

Nitrogen-doped nanosized TiO_2 powders were prepared by a simple thermal treatment method of the mixture of titanium dioxide and urea. The prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra (UV-Vis-DRS) and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the crystal structure of N-TiO₂ was a mixture of anatase and rutile phases, and the average particle size was 31 nm calculated from XRD results. The UV–vis spectra indicate an increase in absorption of visible light when compared to undoped TiO₂. The photocatalytic activity of nitrogen-doped TiO₂ powder was evaluated by the decomposition of methylene blue under visible light irradiation. And it was found that nitrogen-doped TiO₂ powders exhibited much higher photocatalytic activity than undoped TiO₂. Moreover, the study also showed that, the doping N atoms improve the growth of the TiO₂ crystal and phase transformation.

Keywords: Titanium dioxide, photocatalysis, N-doped TiO₂, methylene blue, urea.

1. GIỚI THIỆU

Vật liệu TiO₂ đã được biết đến với những ứng dụng tuyệt vời như: chế tạo vật liệu tự làm sạch, ứng dụng trong pin mặt trời, dùng làm vật liệu quang xúc tác (QXT) trong xử lí môi trường [1],.... Hạn chế lớn nhất của TiO₂ là có năng lượng vùng cấm rộng (khoảng 3,05-3,25 eV) nên chỉ bị kích thích bởi ánh sáng tử ngoại gần, giảm khả năng ứng dụng thực tế của nó [1]. Do vậy, kỹ thuật đưa các nguyên tố khác nhau vào cấu trúc mạng tinh thể TiO₂ đã được sử dụng nhằm nâng cao hơn nữa hoạt tính QXT của nó trong vùng ánh sáng nhìn thấy.

Vật liệu TiO₂ được pha tạp bởi nitơ (N-TiO₂) đang nhận được sự quan tâm đáng kể do khả năng hoạt động QXT cao dưới ánh sáng nhìn thấy [2, 3, 4]. Vật liệu này có thể được điều chế bằng nhiều phương pháp khác nhau như: sol-gel [2], thủy phân [3], thủy nhiệt [4],... và phương pháp điều chế hiện đang phát triển rất đa dạng. Tuy nhiên, việc đề xuất phương pháp điều chế đơn giản mà có thể tạo ra được vật liệu N-TiO₂ có hoạt tính QXT cao trong vùng ánh sáng nhìn thấy là thật sự cần thiết.

Trong công trình này, chúng tôi thông báo một số kết quả về điều chế bột nano $N-TiO_2$ bằng phương pháp xử lí nhiệt đơn giản hỗn hợp giữa $Ti(OH)_4$ và urê. Khảo sát ảnh hưởng của nitơ đến sự phát triển tinh thể, cấu trúc pha và khả năng hấp thụ

quang của TiO₂. Đồng thời, hoạt tính QXT của sản phẩm được đánh giá thông qua khả năng phân hủy quang xanh metylen trong dung dịch nước dưới bức xạ ánh sáng nhìn thấy từ đèn Compact.

2. PHƯƠNG PHÁP NGHIÊN CỨU

2.1. Thực nghiệm

Các hóa chất được sử dụng trong thực nghiệm đều của hãng Merck bao gồm: TiOSO₄, NaOH, $(NH_2)_2CO$ và C_2H_5OH .

- Điều chế bột khô Ti(OH)₄

Bột khô Ti(OH)₄ thu được bằng cách thủy phân 1 lít dung dịch hỗn hợp gồm: TiOSO₄ 0,14 M và NaOH 0,22 M (tỷ lệ thể tích TiOSO₄/NaOH là 10/8) ở nhiệt độ phòng, rửa huyền phù với etanol - nước và làm khô ở 120 °C trong 24 giờ.

- Điều chế bột N-TiO₂ và TiO₂

Bột N-TiO₂ được điều chế bằng cách trộn đều 2,0 gam bột khô Ti(OH)₄ với các lượng khác nhau của urê, nung hỗn hợp ở nhiệt độ thích hợp trong 2 giờ (tốc độ nâng nhiệt là 10 °C/phút). Bột TiO₂ không pha tạp (TiO₂) được điều chế tương tự nhưng không có sự bổ sung lượng urê.

- Đánh giá hoạt tính QXT của sản phẩm

Hoạt tính QXT của các mẫu được đánh giá bằng cách trộn 0,15 gam bột sản phẩm vào 200 ml dung

dịch xanh metylen có nồng độ 10 mg/l. Khuấy trộn hỗn hợp 30 phút trong bóng tối để đạt cân bằng hấp phụ-giải hấp. Sau đó chiếu xạ hỗn hợp bằng đèn Compact Golstar 40W (có 3 vùng bước sóng đặc trưng là 435, 545 và 610 nm) trong 75 phút. Hiệu suất phản ứng QXT được xác định bằng cách so sánh độ hấp thụ quang (Abs) của dịch trước và sau phản ứng ở cực đại hấp thụ $\lambda = 664$ nm.

2.2. Các phương pháp xác định

Giản đồ nhiễu xạ tia X (XRD) của các mẫu bột TiO₂ được ghi trên nhiễu xạ kế tia X D8 Advance Brucker (Đức) với tia CuK_{α} có $\lambda = 0,154056$ nm, ghi ở 25 °C, góc quét 20 từ 20 đến 70°, tốc độ quét $0,03^{\circ}$ /s. Kích thước hạt trung bình và thành phần pha được xác định dựa vào các pic đặc trưng của pha anata (101) và pha rutin (110) trên giản đồ XRD theo [5].

Các ảnh TEM của sản phẩm được chụp trên kính hiển vi điện tử truyền qua JEM1010 (JEOL-Nhật Bản) với hệ số phóng đại khoảng x50 đến x600.000, độ phân giải 3Å, điện áp gia tốc U khoảng 40 đến 100 kV.

Phổ UV-Vis-DRS của các mẫu bột TiO₂ được ghi bởi máy JASCO-V550 (Nhật Bản) trên nền BaSO₄. Hàm Kubelk-Munk được sử dụng để xác định năng lượng vùng cấm của các mẫu TiO₂ bằng cách vẽ đồ thị tương quan giữa $[F(R)E]^{1/2}$ và năng lượng ánh sáng. Ngưỡng hấp thụ quang (λ_g) được xác định dựa vào phương trình $\lambda_g = 1240/E_g$, trong đó E_g là năng lượng vùng cấm [5].

Phổ FT-IR được ghi bởi thiết bị IFS 28 Brucker (Đức) trên nền KBr.

Các giá trị độ hấp thụ quang của dung dịch xanh metylen được xác định bằng cách ghi phổ hấp thụ UV-VIS trên máy UV2450 - Shimadzu, Nhật Bản.

3. KẾT QUẢ VÀ THẢO LUẬN

3.1. Ảnh hưởng của nhiệt độ nung

Để khảo sát ảnh hưởng nhiệt độ nung đến cấu trúc pha và hoạt tính QXT của bột N-TiO₂, hỗn hợp Ti(OH)₄ và urê (tỷ lệ mol urê/Ti(OH)₄ = 2) được nung trong 2 giờ ở các nhiệt độ khác nhau: 600, 650, 700, 750 và 800 °C. Các mẫu này được kí hiệu tương ứng từ TKU600 đến TKU800. Để so sánh, mẫu TiO₂ cũng được nung ở các nhiệt độ trên và được kí hiệu tương ứng từ T600 đến T800. Giản đồ XRD của các mẫu TiO₂ và N-TiO₂ theo nhiệt độ nung thay đổi được đưa ra tương ứng ở hình 1 và hình 2. Giá trị kích thước hạt trung bình, thành phần pha và hiệu suất phân hủy quang được trình bày trong bảng 1.

Kết quả cho thấy, mẫu TiO₂ ở khoảng nhiệt độ nung từ 600 đến 750 °C là đơn pha anata (đỉnh pic đặc trưng ứng góc 2θ xấp xỉ 25.3°). Nhiệt đô chuyển pha từ anata sang rutin trên mẫu TiO₂ là 800 °C (đỉnh pic đặc trưng cho pha rutin xấp xỉ 27.5°). Trong khi đó, ở khoảng nhiệt độ nung từ 600 đến 700 °C, mẫu N-TiO₂ là đơn pha anata và có nhiệt độ chuyển pha sớm hơn (750 °C). Đồng thời, từ bảng 1 cho thấy, cả hai mẫu Ti O_2 và N-Ti O_2 đều có đô kết tinh và kích thước hạt trung bình tăng dần khi nâng dân nhiệt độ nung. Các mẫu N-Ti O_2 có kích thước hạt trung bình lớn hơn so với mẫu TiO₂ ở cùng nhiệt độ nung tương ứng. Như vậy sự có mặt của nitơ trong mạng tinh thể TiO₂ đã thúc đẩy quá trình chuyên pha từ anata sang rutin và xúc tiên sự phát triển tinh thể.

Tuy nhiên, Y. Yin và cộng sự khi điều chế bột N-TiO₂ bằng phương pháp sol-gel với chất đầu là $Ti(OC_2H_5)_4$ và từ nhiều nguồn nitơ khác nhau: NH₄Cl, C₆H₁₅N và NH₄OH [2]. Y. Yin nhận thấy, sự có mặt của nitơ trong mạng tinh thể Ti O_2 đã kìm hãm quá trình chuyển pha và ức chế sự phát triển tinh thể. Kết quả tương tư cũng được tìm thấy ở công trình [6] khi thực hiện phản ứng giữa titan(IV) *n*-butoxit và etylamin hoặc công trình [3] thực hiện phản ứng thủy phân dung dịch TiCl₄ với sự có mặt của (NH₂)₂CO. Sự khác nhau trên có thể do phương pháp điều chế của chúng tôi thực hiện phản ứng ở dạng pha rắn còn các công trình nghiên cứu [2, 3, 6] tiến hành phản ứng ở dạng pha lỏng. Khi phản ứng được thực hiện ở dạng pha lỏng, các phối tử NA, có khả năng tao phức bền với các obitan d trống của ion Ti⁴⁺ dẫn đến nâng cao nhiệt độ chuyển pha từ anata sang rutin và ức chế sự phát triển tinh thể. Trái lai, nếu thực hiện phản ứng ở dạng pha rắn giữa $Ti(OH)_4$ với urê hoặc dòng khí NH₃ có thể dẫn đến sự thay thể trực tiếp O bởi N nên thúc đẩy quá trình chuyển pha và xúc tiến sự phát triển tinh thể TiO_2 [7]. Tác dụng thúc đẩy quá trình chuyển pha từ anata sang rutin và xúc tiến sư phát triển tinh thể TiO₂ của nitơ trong nghiên cứu của chúng tôi cũng phù hợp với công trình [4] khi xử lí thủy nhiệt ở 240 °C trong 10 giờ hỗn hợp Ti(OH)₄ và urê hoặc công trình [8] điều TCHH, T. 52(1), 2014

Bảng 1 còn cho thấy, khi tăng dần nhiệt độ nung, cả hai vật liệu TiO₂ và N-TiO₂ đều có hiệu suất phân hủy quang tăng và đạt giá trị cực đại ứng với mẫu được nung ở 750 °C. Điều này được cho là khi tăng dần nhiệt độ nung vật liệu ổn định hơn về mặt cấu trúc. Nhưng nếu tiếp tục tăng nhiệt độ nung lớn hơn 750 °C, hiệu suất phân hủy quang giảm. Nguyên nhân do kích thước hạt trung bình tăng và nồng độ nitơ trong mạng tinh thể TiO₂ giảm [9]. Nhìn chung,

Một phương pháp đơn giản điều chế bột nano N-Ti $O_{2...}$

vật liệu N-TiO₂ đều có hiệu suất phân hủy quang cao hơn so với TiO₂ ở các nhiệt độ nung tương ứng. Như vậy, nhiệt độ nung thích hợp cho quá trình phân hủy nhiệt hỗn hợp bột khô Ti(OH)₄ và urê là khoảng 750 $^{\circ}$ C trong hai giờ.

Bảng 1: Kích thước hạt trung bình (D), thành phần pha và hiệu suất phân hủy quang (H) của các mẫu TiO₂ ở các nhiệt độ nung khác nhau

Mẫu	$\begin{array}{c c} M \tilde{a} u \\ T i O_2 \end{array} D, nm$	Thành phần pha		LI 0/	Mẫu	Dnm	Thành phần pha		Ц 0/
TiO ₂		Anata, %	Rutin, %	п, %	N-TiO ₂	D, IIII	Anata, %	Rutin, %	п, %
T600	13,0	100	0	36,75	TKU600	17,6	100	0	65,52
T650	14,6	100	0	38,82	TKU650	19,9	100	0	84,20
T700	24,8	100	0	44,40	TKU700	28,7	100	0	92,04
T750	28,2	100	0	50,15	TKU750	31,5	83,0	17,0	98,25
T800	35,3	69,5	30,5	47,23	TKU800	36,7	28,0	72,0	91,01

Hình 1: Giản đồ XRD của các mẫu TiO₂ ở các nhiệt độ nung thay đổi từ 600 đến 800 $^{\circ}$ C

3.2. Ảnh hưởng của tỷ lệ mol urê/Ti(OH)₄

Để khảo sát ảnh hưởng của nitơ đến cấu trúc và hoạt tính QXT trên bột nano N-TiO₂ điều chế được, bột khô Ti(OH)₄ được trộn đều với urê theo tỷ lệ mol urê/Ti(OH)₄ khác nhau 0, 1, 2, 3, 4 và 5. Các mẫu được kí hiệu tương ứng từ TKU0 đến TKU5. Hỗn hợp bột khô Ti(OH)₄ và urê được nung ở 750 °C trong 2 giờ. Giản đồ XRD của các mẫu theo tỷ lệ mol urê/Ti(OH)₄ khác nhau được đưa ra ở hình 3. Giá trị kích thước hạt trung bình, thành phần pha và hiệu suất phân hủy quang được trình bày trong bảng 2.

Từ hình 3 và bảng 2 cho thấy, mẫu TiO₂ không pha tạp (TKU0) ở dạng đơn pha anata với đỉnh pic đặc trưng ứng với góc 2 θ xấp xỉ 25,3°. Các mẫu N-TiO₂ tồn tại ở dạng hỗn hợp hai pha anata và rutin. Thành phần pha rutin tăng dần khi tăng dần tỷ lệ mol urê/Ti(OH)₄. Điều này một lần nữa khẳng định nitơ đã xúc tiến quá trình chuyển pha từ anata sang rutin như đã được thảo luận ở mục 3.1.

Hình 2: Giản đồ XRD của các mẫu N-TiO₂ ở các nhiệt độ nung thay đổi từ 600 đến 800 °C

Bảng 2 cho thấy, khi tăng dần tỷ lệ mol urê/Ti(OH)₄ từ 1 đến 3, kích thước hạt trung bình tăng dần. K. Prabakar cho rằng [8], do độ dài liên kết Ti-N (1.964 và 2.081 Å) dài hơn không đáng kể so với độ dài liên kết Ti-O (1.942 and 2.002 Å) nên ở nồng độ thấp của nitơ không ảnh hưởng lớn đến cấu trúc tinh thể. Tuy nhiên, nếu ở nồng độ cao của nito sẽ làm tăng thể tích trong cấu trúc mạng tinh thể, từ đó có thể làm tăng kích thước hạt trung bình [8]. Nếu tăng tỷ lệ mol urê/Ti(OH)₄ > 3, kích thước hạt trung bình có xu hướng giảm. K. Prabakar giải thích, nếu ở nồng độ quá cao của nito, mạng tinh thể TiO₂ bị nén lại theo cơ chế pha tạp xen kẽ, dẫn đến làm giảm kích thước hạt [8].

Bảng 2: Kích thước hạt trung bình (D), thành phần
pha và hiệu suất phân hủy quang (H) của các mẫu
TiO ₂ ở các tỷ lê mol urê/Ti(OH)₄ khác nhau

Kí	Tỷ lệ mol	D, 1	nm	Thành pł	H,		
mẫu	urê/ Ti(IV)	Anata	Anata Rutin		Rutin, %	%	
TKU0	0	28,3	-	100	0	52,32	
TKU1	1	28,7	35,2	84,5	15,5	80,72	
TKU2	2	30,8	40,0	78,5	21,5	98,87	
TKU3	3	31,4	38,1	62,5	37,5	92,17	
TKU4	4	29,7	36,3	49,0	51,0	85,43	
TKU5	5	26,5	33,1	41,5	58,5	72,45	

Hình 4: Ảnh TEM của mẫu TiO₂ được nung ở 750 °C

Phổ UV-Vis pha rấn của các mẫu TiO₂ ở tỷ lệ mol urê/Ti(OH)₄: 0; 1; 3 và 5 được đưa ra ở hình 6. Từ hình 6 cho thấy, khi tăng dần tỷ lệ mol urê/Ti(IV) độ hấp thụ quang của các mẫu tăng Giá trị năng lượng vùng cấm của các mẫu TiO₂ ở tỷ lệ mol urê/Ti khác nhau được trình bày trong bảng 3. Từ bảng 3 nhận thấy, mẫu TiO₂ (3,11 eV) có giá trị năng lượng vùng cấm lớn hơn so với tất cả các mẫu N-TiO₂ (trong khoảng 2,28-3,0 eV). Như vậy, sự có mặt của nitơ trong mạng tinh thể TiO₂ giúp tăng cường khả năng hấp thụ quang trong vùng cấm của TiO₂.

Phổ hồng ngoại biến đổi Furie FT-IR của mẫu TiO_2 không pha tạp và mẫu $N-TiO_2$ (ở tỷ lệ mol

Bảng 2 còn cho thấy, khi tăng dần tỷ lệ mol urê/Ti(OH)₄ từ 0 đến 2, hiệu suất phân hủy quang tăng và đạt giá trị lớn nhất ở mẫu có tỷ lệ mol urê/Ti(OH)₄ = 2. Nguyên nhân có thể do mẫu này có tỷ lệ pha anata/rutin hợp lí (khoảng 78,5/21,5). Theo nhiều nghiên cứu gần đây cho thấy, vật liệu TiO₂ ở dạng hỗn hợp hai pha với tỷ lệ pha anata/rutin gần với tỷ lệ 70/30 của TiO₂ thương mại Degussa P25 sẽ có hoạt tính QXT cao hơn so với trường hợp đơn pha anata và rutin. Nếu tiếp tục tăng tỷ lệ mol này > 2, hiệu suất phân hủy quang giảm. Nguyên nhân có thể ở nồng độ cao của nitơ trong mạng tinh thể TiO₂ đã làm tăng quá trình tái hợp giữa các cặp electron và lỗ trống quang sinh.

Ånh TEM của mẫu TiO₂ không biến tính (nung ở 750°C) và mẫu N-TiO₂ (tỷ lệ mol urê/Ti(OH)₄ = 2, nung ở 750°C) được đưa ra tương ứng ở hình 4 và hình 5. Từ các ảnh TEM cho thấy, mẫu N-TiO₂ có kích thước hạt bé và phân bố tương đối đồng đều hơn so với mẫu TiO₂.

Hình 5: Ånh TEM của mẫu N-TiO₂ ứng với tỷ lệ mol urê/Ti(OH)₄ = 2 và được nung ở 750 $^{\circ}$ C

urê/Ti(OH)₄ = 2) được đưa ra ở hình 7. Từ hình 7 cho thấy, mẫu TiO₂ không pha tạp có hai pic đặc

Bảng 3: Giá trị năng lượng vùng cấm (E_g) của các mẫu TiO₂ ở những tỷ lệ mol urê/Ti(OH)₄ khác nhau

Kí hiệu mẫu	TKU0	TKU1	TKU3	TKU5
Tỷ lệ mol urê/Ti(OH) ₄	0	1	3	5
E. (eV) TCHH. T. 52(3.11 1), 2014	3.00	2.94	2.28 đến 2.82

trưng ở các số sóng 829,15 và 1644,97 cm⁻¹. Mẫu N-TiO₂ cũng có hai pic đặc trưng ở vùng số sóng này nhưng chuyển dịch về phía có số sóng ngắn hơn là 811,28 và 1630,83 cm⁻¹. Kết quả này chứng tỏ đã có sự tham gia của N vào cấu trúc mạng tinh thể TiO₂

Một phương pháp đơn giản điều chế bột nano N-Ti $O_{2...}$

[10]. Pic ứng với số sóng 811,28 và 829,15 cm⁻¹ được qui gán cho dao động của liên kết Ti-O trong mạng tinh thể TiO₂ [4, 10]. Pic ứng với số sóng 1630,83 và 1644,97 cm⁻¹ là dao động của các nhóm -OH trên bề mặt TiO₂ [10, 11]. Nhóm hydroxyl trên bề mặt là yếu tố quan trọng ảnh hưởng đến hoạt tính quang xúc tác. Số lượng nhóm hydroxyl trên bề mặt TiO₂ càng lớn phản ứng quang xúc tác xảy ra càng nhanh. Pic lớn hơn thu được tại 1630,83 cm⁻¹ cho mẫu N-TiO₂ so với mẫu TiO₂ không pha tạp chứng tỏ rằng mẫu N-TiO₂ có các nhóm hydroxyl trên bề mặt nhiều hơn [11]. Điều này giải thích vì sao các mẫu N-TiO₂ đều có hoạt tính quang xúc tác cao hơn so với mẫu TiO₂ không pha tạp. Ngoài ra, mẫu N-TiO₂ còn xuất hiện thêm đỉnh pic ở số sóng 1403,63 cm⁻¹. Pic này do một dạng N (-NO_x) được hấp phụ trên bề mặt trong mạng tinh tinh thể TiO₂ [11].

Hình 6: Phổ UV-Vis của các mẫu TiO₂ ở tỷ lệ mol urê/Ti(IV): 0; 1;3; 5 (hình a) và phổ UV-Vis của các mẫu TiO₂ sau khi chuyển tương ứng từ bước sóng ánh sáng sang năng lượngvùng cấm theo hàm Kubelka-Munk (hình b)

Hình 7: Phổ FT-IR của mẫu: (1) TiO₂ và (2) N-TiO₂

4. KÊT LUÂN

Đã điều chế thành công bột nano N-TiO₂ bằng phương pháp nung đơn giản hỗn hợp của Ti(OH)₄ và urê. Điều kiện thích hợp để điều chế ứng với tỷ lệ mol urê/Ti = 2 và sản phẩm được nung ở 750 °C trong 2 giờ. Với các điều kiện này bột N-TiO₂ thu được có kích thước hạt trung bình khoảng 31 nm, hỗn hợp hai pha anata và rutin (tỷ lệ pha anata/rutin khoảng 78,5/21,5) và có hoạt tính QXT cao nhất. Dung dịch xanh metylen gần như bị phân hủy hoàn toàn sau khoảng 75 phút chiếu sáng và cao hơn khoảng 1,89 lần so với mẫu TiO₂ không biến tính. Ngoài ra, nghiên cứu còn cho thấy, nito đã thể hiện vai trò thúc đẩy quá trình chuyển pha từ anata sang rutin và tăng cường khả năng hấp thụ quang trong vùng ánh sáng nhìn thấy của vật liệu TiO₂.

TÀI LIỆU THAM KHẢO

- K. Hashimoto, H. Irie, A. Fujishima. *TiO*₂ photocatalysis: A historical overview and future prospects, Japanese Journal of Applied Physics, 44, 8269-8285 (2005).
- Y. Yin, W. Zhang, S. Chen, S. Yu. Theoretical and experimental study on the electronic structure and optical absorption properties of nitrogen-doped nanometer TiO₂, Materials Chemistry and Physics, 213, 982-985 (2009).
- 3. X. Bu, G. Zhang, C. Zhang. *Effect of nitrogen doping* on anatase rutile phase transformation of TiO₂, Applied Surface Science, **258**, 7997-8001 (2012).

- D. Huang, S. Liao, S. Quan, L. Liu, Z. He, J. Wan, W. Zhou. Synthesis and characterization of visible light responsive N-TiO₂ mixed crystal by a modified hydrothermal process, Journal of Non-Crystalline Solids, 354, 3965-3972 (2008).
- L. Xu, C. Q. Tang, J. Qian, Z. B. Huang. *Theoretical* and experimental study on the electronic structure and optical absorption properties of P-doped TiO₂, Applied Surface Science, 256, 2668-2671 (2010).
- J. Xu, Y. Ao, D. Fu, C. Yuan, A simple route to synthesize highly crystalline N-doped TiO2particles under low temperature, Journal of Crystal Growth, 310, 4319-4324 (2010).
- 7. D. A. H. Hanaor, C. C. Sorrell. *Review of the anatase to rutile phase transformation*, J. Mater. Sci., **46**, 855-874 (2011).
- 8. K. Prabakar, T. Takahashi, T. Nezuka, K. Takahashi,

T. Nakashima, Y. Kubota, A. Fujishima. Visible light-active nitrogen-doped TiO_2 thin films prepared by DC magnetron sputtering used as a photocatalyst, Renewable Energy, **33**, 277-281 (2008).

- S. Sato, R. Nakamura, A. Abe. Visible light sensitization of TiO₂ photocatalysts by wet-method N doping, Applied Catalysis A: General 284, 131-137 (2005).
- X. Cheng, X. Yu, Z. Xing. Characterization and mechanism analysis of N doped TiO₂ with visible light response and its enhanced visible activity, Applied Surface Science, 258, 3244-3248 (2012).
- B. Naik, K. M. Parida, C. S. Gopinath. Facile synthesis of N- and S-incorporated nanocrystalline TiO₂ and direct solar-light-driven photocatalytic activity, J. Phys. Chem. C, **114**, 19473-19482 (2010).

Liên hệ: Nguyễn Văn Hưng

Khoa Hóa học, Trường Đại học Đồng Tháp Số 783, Phạm Hữu Lầu, Phường 6, Thành phố Cao Lãnh, Tỉnh Đồng Tháp Email: nguyenvanhung.chem@gmail.com.