ISOLATION AND STRUCTURAL CHARACTERIZATION OF PHENOLIC GLYCOSIDE AND TRITERPENES IN CELASTRUS HINDSII BENTH

Received 1 February 2007

TRAN VAN SUNG, NGUYEN HUY CUONG, TRINH THI THUY, PHAM THI NINH, LE THI HONG NHUNG

Institute of Chemistry, Vietnamese Academy of Science and Technology

SUMMARY

Chemical investigation of Celastrus hindsii growing in Quang Binh, Vietnam led to the isolation and structural elucidation of glucosyringic acid, lup-20(29)-ene- 3β ,11 β -diol, lup-20(29)-ene-3-one (lupenone) and lup-5,20(29)-diene-3-one. Their structures were determined on the basis of MS, NMR spectra and comparison with reported data.

Keywords: Celastrus hindsii; Celastraceae; syringic acid, lupane triterpenoids.

I - INTRODUCTION

Celastrus hindsii Benth is a small trees growing wild or cultivated in Son La, Hoa Binh, Nam Ha, Quang Binh provinces of Vietnam. Celastrus hindsii Benth is used as a traditional medicine for the treatment of stomach disease. ulcer, tumors and inflammation in Vietnam [1, 2]. The EtOH extract from the stems of C. hindsii shows potent cytotoxicity against hepatoma, colon carcinoma, as well as against HIV replication in H-9 lymphocytes in vitro [2]. previous report on phytochemical constitution of the C. hindsii leaves dealt with the isolation and structural characterization of three friedelane triterpenes named 3-friedelanol, 3-friedelanone and canophyllol [3]. Further studies on biologically active compounds from this plant, this paper reports the isolation and structural determination of glucosyringic acid (1), lup-20(29)-ene-3 β ,11 β -diol (2) from stems, lup-20(29)-ene-3-one (lupenone, 3) and lup5,20(29)-diene-3-one (4) from the leaves. Their structures were elucidated by MS, NMR spectra and comparison with reported data.

II - EXPERIMENT

1. General

FT-IR: IMPACT 410 (Nicolet, Germany). EI-MS: Mass spectrometer 5989B (Hewlett Packard, USA). ESI-MS: LC-MSD-Trap-SL (USA). NMR: BRUKER Avance 500 spectrometer at 499.8 MHz (1 H) and 125 MHz (13 C, 13 C DEPT). Chemical shifts were referenced to internal TMS (δ = 0, 1 H), CD $_{3}$ OD (δ = 49.0, 13 C) and CDCl $_{3}$ (δ = 77.0, 13 C). All spectra are recorded in the institute of Chemistry, VAST, Hanoi, Vietnam. CC: Silica gel 60, 0.06 - 0.2 mm (Merck) for the first column, silica gel 60, 40 - 63 μ m (Merck) for the following columns. TLC: Silica gel 60 F-254 (Merck).

Table 1: ¹³C-NMR spectral data of triterpenes **2a**, **2** and **3** [125 MHz, CDCl₃, δ (ppm)]

С	2a [6]	2	3
1	39.00	38.07	39.79
2	27.50	25.13	34.53
3	78.60	79.03	216.76
4	39.40	38.89	47.25
5	55.60	53.14	54.31
6	18.10	18.01	18.66
7	35.30	34.14	33.72
8	41.00	41.39	40.86
9	55.70	51.31	48.79
10	37.70	38.89	58.13
11	70.40	75.77	22.54
12	27.70	23.29	24.87
13	37.70	37.61	38.49
14	42.60	42.93	41.98
15	27.50	27.55	27.41
16	55.50	35.60	35.67
17	43.00	42.93	41.98
18	47.70	48.36	41.23
19	47.70	48.00	47.25
20	150.20	150.81	149.81
21	29.80	29.80	30.07
22	39.80	40.02	40.51
23	28.30	27.86	26.43
24	15.50	14.94	14.45
25	16.10	16.25	16.47
26	17.20	14.94	18.52
27	14.50	14.47	14.45
28	18.10	18.05	18.66
29	109.80	109.45	108.40
30	19.40	19.24	18.66

2. Plant material

The leaves of *C. hindsii* were collected in Quang Binh, Vietnam, in October 2005. The

species was identified by Mr. Nguyen Quoc Binh, Institute of Ecology and Natural Resources, VAST, Hanoi, Vietnam. A voucher specimen is deposited in the Herbarium of this Institute

3. Extraction and Isolation

The dried and powdered leaves of *C. hindsii* (1.7 kg) were extracted with 90% aq. EtOH at room temperature. EtOH was evaporated *in vacuo* at 45 C and the aq. solution was partitioned with *n*-hexane followed by EtOAc and *n*-BuOH. The organic solvents were evaporated *in vacuo* to afford 25.5; 16 and 55g of extracts, respectively.

a) Glucosyringic acid (1)

The *n*-BuOH extract (55 g) was chromatographed over silica gel with gradient CH_2Cl_2 -MeOH (90:10 \rightarrow 80:20) and then CH_2Cl_2 -MeOH- H_2O (80:20:1) to give 5 fractions (F-1 \rightarrow F-5). Fraction 4 (F-4) was purified by silica gel CC with gradient MeOH-EtOAc- H_2O (5:60:1 \rightarrow 10:60:2) to give 1 (60 mg, 0.0035%); white powder (MeOH- CH_2Cl_2); ESI-MS: 383 [M+Na]⁺ (91), 199 [M+H-glu]⁺; IR v_{max}^{KBr} (cm⁻¹): 3524, 3446 (OH), 2927, 2856, 1668, 1598, 1464, 1417, 1385, 1331, 1231, 1131, 1008. 1 H- and 13 C-NMR, see table 1.

b) Lup-20(29)-ene-3 β,11 β-diol (2)

EtOAc extract The (16 g) was chromatographed over silica gel with gradient nhexane-EtOAc (20:10) to give 13 fractions (F-1 \rightarrow F-13). Compound 2 was isolated from fraction 8 (F-8) by crystalization from EtOAc, yield 300 mg (0.017%); EI-MS (m/z): 442 [M]⁺(2), 424 $[M-H₂O]^+$ (9), 257 (14), 232 (9), 219 (13), 203 (17), 189 (25), 121 (57), 107 (68), 81 (88), 69 (76), 55 (100); ${}^{1}\text{H-NMR}$ (500 MHz, CDCl₃): δ 1.56 (2H, m, H-2), 3.25 (1H, dd, J = 3.4; 12.1Hz, H-11), 3.42 (1H, dd, J = 4.6; 11.3 Hz, H-3), 1.00 (1H, td, J = 4.8, 7.5 Hz, H-5), 1.33 (1H, m,H-9), 2.37 (1H, dt, J = 11.2, 5.8 Hz), 0.952 (3H, s, Me-23), 0.947 (3H, s, Me-25), 1.04 (3H, s, Me-24), 0.79 (3H, s, Me-26), 0.90 (3H, s, Me-27), 0.75 (3H, s, Me-28), 4,55 (1H, s, H-29A), 4.68 (1H, d, J = 2.1 Hz, H-29B), 1.69 (3H, s, Me-30). ¹³C-NMR, see table 2.

c) Lup-20(29)-ene-3-one (3) and lup-5,20(29)-diene-3-one (4)

The dried and powdered leaves of *C. hindsii* (600g) were extracted with 90% aq. EtOH at room temperature. EtOH was evaporated *in vacuo* at 45 C and the aq. solution was partitioned with *n*-hexane followed by EtOAc and *n*-BuOH. The *n*-hexane extract (15 g) was chromatographed over silica gel with gradient *n*-hexane-EtOAc (90:10 \rightarrow 10:90) to give 6 fractions (F-1 \rightarrow F-6). Compounds 3 + 4 were isolated as white powder from MeOH as a mixture (ratio 1:4) from F-5 (20 mg, 0.0033%).

1: Glucosyringic acid

3: Lup-20(29)-ene-3-one

The IR spectrum of compound **1** showed the presence of hydroxyl groups (3440 - 3524 cm⁻¹), a carbonyl absorption band (1668 cm⁻¹), aromatic ring (1600) and C-O bond (1008 cm⁻¹). The ESI-MS (positive ions) gave the base peak at *m/z* 383 (100) [M+Na]⁺, combination with ¹³C-NMR and APT spectra leading to the

Lup-20(29)-ene-3-one (3): the minor component (ca 20 %). ¹³C-NMR: see table 2.

Lup-5,20(29)-diene-3-one (**4**): ¹³C-NMR (125 MHz, CDCl₃, &ppm): 34.52 (C-1), 33.05 (C-2), 216.71 (C-3), 46.32 (C-4), 144.25 (C-5), 120.51 (C-6), 46.23 (19), 149.81, 108.40 (C-29).

III - RESULTS AND DISCUSSION

The residue of an ethanol extract of the stems of *C. hindsii* was partitioned with *n*-hexane, ethyl acetate and *n*-butanol, successively. The *n*-BuOH extract, after evaporation of the solvents, was subjected to column chromatography, recrystallization to give 1.

HO
$$\frac{12}{10}$$
 $\frac{18}{15}$ $\frac{17}{22}$ $\frac{28}{15}$ $\frac{10}{23}$ $\frac{10}{24}$ $\frac{11}{27}$ $\frac{11}{28}$ $\frac{11}{28}$ $\frac{11}{27}$ $\frac{11}{28}$ $\frac{11}{28}$ $\frac{11}{27}$ $\frac{11}{28}$ $\frac{11}{28}$ $\frac{11}{27}$ $\frac{11}{28}$ \frac

2: Lup-20,29-ene-3β,11β-diol

4: Lup-5,20(29)-diene-3-one

molecular formula $C_{15}H_{20}O_{10}$. The ¹³C-NMR and DEPT spectra showed the presence of a glucose moiety and an aglycone moiety with nine carbon atoms. This was supported by the loss of a 162 mass unit to give a peak at m/z 199 [M+H-162]⁺ in the mass spectrum. The appearance of six signals in the ¹³C-NMR

spectrum of the aglycone moiety corresponded to nine carbons, indicating that the molecule must be a degree of symmetry in its structure. This was confirmed by two singlets at δ 7.39 (H-2 and H-6) and 3.92 (6H, 2xOCH₃), therefore two methoxyl groups were attached at C-3&C-5. The ¹H-NMR spectrum displayed one doublet at $\delta 5.28$ (d, J = 8.0 Hz, H-1') and the 13 C-NMR signal at $\delta_{\rm C}104.29$ (C-1'), suggesting that β-D-glucose moiety was attached to C-4. This was confirmed by the CH long-range correlation of C-4 and anomeric proton H-1' C-7 $(\delta_{\rm C}169.66)/\delta_{\rm H}5.09)$, whereas shows correlations to both H-2, H-6 ($\delta_{\rm C}$ 169.66/ $\delta_{\rm H}$ 7.39) in the HMBC spectrum. Therefore, the structure of 1 was elucidated as glucosyringic acid. This compound was isolated from the roots of Rododendron molle. In a preliminary in vitro glucosyringic acid inhibited significantly the proliferation of murine B lymphocytes at a concentration of 1x 10⁻⁶ M [4].

Compound 2 was isolated from the EtOAc extract of the stems. The IR spectrum indicated a hydroxy (3363 cm⁻¹) and olefinic methylene $(>C=CH_2)$ group (1641, 3070 cm⁻¹). The EI-MS showed a molecular ion peak at m/z 442 (2) [M]+, combination with 13C-NMR and APT spectra leading to the molecular formula C₃₀H₅₀O₂. The EI-MS displayed three important fragment ions at m/z 219 (13), 203 (17), 189 (25), suggested that 2 is a lupan-triterpene skeleton [5]. The peak at m/z 203 indicated fragment ion of ring A-B with C-3 hydroxy group; ion at m/z 219 was formed by the C-ring cleavage indicated that the second hydroxy was in the fragment of ring D-E as shown in Scheme 1. The ¹³C-NMR and DEPT spectra showed the

presence of signals for 30 carbons including $7xCH_3$, $10xCH_2$, 7xCH, 6xCq. The ¹H- and ¹³C-NMR spectral data for 2 was similar to those of 2a except the significant changes in the chemical shifts at C-11 and its neighbour: signal of C-11 shifted downfield (Δδ 5.4 ppm), C-9 and C-12 were shifted upfield ($\Delta \delta 4.4$ ppm). Significantly changes in the chemical shifts of C-11, C-9 and C-12 can only be explained when the configuration of C-11 is different to those of 2a. The orientation of the hydroxyl group was clarified by NOESY spectrum. The correlations between H-11 α /H-3 α , Me-27, Me-30 indicated that the relative configuration of OH-11 is β . Therefore, the structure of 2 was determined as lup-20,29-ene-3 β ,11 β -diol. This compound was isolated for the first time from Dodonaceae attennuata [6]. Its epimer, lup-20,29-ene- 3β ,11a-diol (nepeticin) shows antibiotic and blood cholesterol reducing activity [6].

The NMR spectra indicated that compounds 3+4 were isolated as a mixture with a 1:4 ratio from the n-hexane extract of the leaves of C. hindsii, determined by the integrals in the ¹H-NMR. The ¹³C-NMR spectrum of 3 and 4 is similar to those of 2, except the appearance of a ketone group ($\delta 216.76/216.71$). In the ¹³C-NMR spectrum, only the major component 4 showed two double bonds at $\delta 144.25$, 120.51, 149.81, 108.4 of $C_5=C_6$ and $C_{20}=C_{29}$. The structure of 3 identified as lup-20(29)-ene-3-one (lupenone) by comparison of its ¹³C-NMR spectral data with reported data [5], whereas the structure 4 was suggested as lup-5,20(29)-dien-3-one with the help of ACD/¹³C-NMR software [6, 7].

2a: Lup-20(29)-ene-3 β ,11 α -diol

Scheme 1: EI-MS spectral fragmentation of 2

Table 2: ¹³C- and ¹H-NMR spectral data of 1 [125 MHz, CD₃OD, δ (ppm)]

С	δC	δH (J in Hz)	HMBC correlation
1	127.61		H-2, H-6
2,6	108.81	7.39, 2H	5-OMe
3,5	153.76		H-2, H-6, OMe C-5/H-6, C-3/H-2
4	139.82		H-1', H-2, H-6
7	169.66		H-2, H-6
1'	104.29	5.09 d (7.5)	H-2'
2'	75.28	3.56 m	H-1', H-3'
3'	77.34	3.52 m	H-2', H-4', H-5'
4'	70.86	5.52 m	H-3', H-5'
5'	77.91	3.33 m	H-4', H-6'
6'	62.05	3.72 dd (4.9; 11.5)	H-5'
		3.72 dd (4.9; 11.5)	
O <u>Me</u>	57.33	3.92 s	Н-6

Acknowledgements: We thank Mr. Nguyen Quoc Binh, Institute of Ecology and Natural Resources, VAST, Hanoi, Vietnam for identification of plant materials.

REFERENCES

- 1. Yao-Haur Kuo, Li-Ming Yang Kuo. Phytochemistry, **44** (7), 1275 1281 (1997).
- 2. Tram Ngoc Ly, Makoto Shimoyamada and Ryo Yamauchi. J. Agric. Food Chem., **54**, 3786 3793 (2006).
- 3. Trinh Thi Thuy, Nguyen Huy Cuong, Tran

Van Sung. Triterpenes from *Celastrus hindsii*, accepted in 2006.

- 4. Guan-Hu Bao, Li-Quan Wang, Kin-Fai Cheng, Yong-Hong Feng, Xiao-Yu Li, Guo-Wei Quin. Planta Medica, **69**, 434 439 (2003).
- A. Hisham, G. Jaya Kumar, Y. Fujimoto, N. Hara. Phytochemistry, 40 (4), 1227 - 1231 (1995).
- 6. V. U. Ahmad. Tetrahedron Letters, **22**, 1715 (1981).
- 7. J. S. Alves. et al. Magn. Reson. Chem., **38**, 201 206 (2000).