NGHIÊN CỨU TỔNG HỢP VẬT LIỆU XÚC TÁC QUANG HÓA AI/AI₂O₃/TiO₂-Ag KHẢ KIẾN ỨNG DỤNG ĐỂ XỬ LÝ NƯỚC Ô NHIễM

Đỗ Phương Thảo¹, Trần Thị Thúy², Mai Thanh Tùng², Nguyễn Xuân Trường^{2*}

¹Khoa Luyện kim, Trường Cao đẳng Cơ khí Luyện kim
²Viện Kỹ thuật Hóa học, Trường Đại học Bách khoa Hà Nội Đến Tòa soan 27-11-2013

Abstract

New visible light photocatalyst Al/Al₂O₃/TiO₂-Ag is synthesized. The material is characterized using different analytical techniques such as X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Diffusive Reflectance Spectroscopy (DRS) and Field Emission Scanning Electron Microscopy (FESEM). It is revealed that the Ag doped Al/Al₂O₃/TiO₂ film drives the catalytic activity from UV to visible region. The environmental application of the photocatalyst is investigated by the degradation of methyl orange (MO) under sunlight. Furthermore, the effect of pH and H_2O_2 as an oxidizing agent on the degradation efficiency of the material is also studied. The results show the optimal conditions for the photodegradation of the MO 3mg sample are pH 2 and 1ml H_2O_2 9 % in 6-hour irradiation.

Keywords: Visible light photocatalyst, photodegradation, methyl orange, environmental application, Ag doped $Al/Al_2O_3/TiO_2$ film.

1. MỞ ĐẦU

Nước thải của các ngành công nghiệp và khu dân cư chứa một lượng lớn chất thải hữu cơ nguy hại khó phân hủy. Việc xử lý các chất ô nhiễm hữu cơ khó phân hủy là một vấn đề khó, đòi hỏi sự đầu tư lớn về trang thiết bị và công nghệ. Trong vài thập kỷ gần đây có rất nhiều nghiên cứu đã sử dung chất xúc tác quang hóa Ti O_2 để xử lý nước ô nhiễm. Ti O_2 không độc, bền và giá thành không cao phù hợp dùng làm chất xúc tác quang hóa cho phản ứng phân hủy các chất hữu cơ ô nhiễm. Tuy nhiên, nhược điểm của vật liệu TiO₂ được điều chế theo phương pháp thông thường là có diện tích bề mặt không lớn và khó thu hồi xúc tác sau phản ứng [1, 6, 7]. Một nhược điểm lớn khác đã hạn chế khả năng ứng dụng trong thực tế của vật liệu TiO₂ đó là hoạt tính quang xúc tác của nó chỉ thể hiện khi được kích thích bằng ánh sáng tử ngoại [4, 5]. Điều này đồng nghĩa với việc tiêu hao một năng lượng điện nhất định trong quá trình sử dụng xúc tác. Do đó hiện nay nhiều nghiên cứu tập trung tổng hợp vật liệu TiO₂ trên cơ sở các chất mang, pha tạp các nguyên tố kim loại và phi kim.... Mục đích để cải thiện độ bền, hoàn nguyên xúc tác, đồng thời mở rộng hoạt tính quang xúc tác sang vùng khả kiến để có thể tận dụng nguồn năng lượng ánh sáng mặt trời dồi dào [2, 3, 8, 9].

Trong bài báo này, chúng tôi trình bày kết quả nghiên cứu tổng vật liệu xúc tác quang hóa khả kiến Al/Al₂O₃/TiO₂-Ag. Đồng thời đánh giá khả năng ứng dụng vật liệu để xử lý nước ô nhiễm thông qua hiệu suất của phản ứng quang phân hủy metyl da cam dưới tác dụng của ánh sáng mặt trời.

2. THỰC NGHIỆM

2.1. Hóa chất và thiết bị

Hóa chất: Tetra *n*-butyl octotitanat - TBOT, etanol-EtOH, H_2SO_4 98 % (Merck, Đức), HNO₃ 63%, AgNO₃ tinh thể, H_2O_2 30 %, metyl da cam-MO, H_3PO_4 , CrO₃ tinh thể (Xilong, Trung Quốc), nhôm lá bề dày 0,5 mm, nước cất 2 lần.

Dụng cụ và thiết bị: Điện cực titan, máy khuấy từ gia nhiệt, nguồn điện một chiều, máy đo pH, cân phân tích, lò nung.

2.2. Tổng hợp vật liệu Al/Al₂O₃/TiO₂-Ag

2.2.1. Tổng hợp vật liệu mang Al/Al_2O_3 bằng phương pháp điện hóa

Mẫu Al được lau sạch dầu mõ bằng giấy lọc tẩm axeton, rửa nước nóng, rửa nước lạnh rồi ngâm trong dung dịch tẩy bóng nhôm (H_2SO_4 28 %,

H₃PO₄ 50 %, CrO₃ 4 %, nước 18 %) ở 80-90 °C trong 2-4 phút [7].

Mẫu Al sau đó được rửa lại bằng nước cất và mắc vào bình điện phân. Anot là mẫu Al còn catot là điện cực titan nguyên chất. Điện phân với mật độ dòng 1,5 A/dm² trong dung dịch $H_2SO_4 2$ M với thời gian 30 phút.

2.2.2. Tổng hợp vật liệu Al/Al₂O₃/TiO₂-Ag bằng phương pháp nhúng phủ sol - gel

Trước hết, chuẩn bị dung dịch sol theo tỷ lệ vê mol như sau: TBOT:H₂O:EtOH:HNO₃:AgNO₃ = 1:1:8:0,27:0,03 [3, 4]. Theo tỷ lệ mol này, lượng Ag/TiO₂ tương ứng về phần trăm khối lượng là 1,5 %. Hỗn hợp luôn được khuấy đều ở 0 °C. Sau đó, nhúng vật liệu Al/Al₂O₃ vào dung dịch sol, nung ở 500 °C trong 10 phút. Quá trình nhúng và nung được lặp lại 2 lần, nung lần thứ 2 thực hiện trong 30 phút [3, 4].

2.3. Đánh giá hoạt tính xúc tác quang hóa của vật liệu

Hoạt tính quang xúc tác của vật liệu $Al/Al_2O_3/TiO_2$ -Ag được đánh giá bằng phản ứng quang phân hủy một lượng không đổi 3 mg MO trong nước, diện tích bề mặt của xúc tác là 24 cm², dưới tác dụng của ánh sáng mặt trời. Hiệu suất của phản ứng phân hủy MO được tính theo công thức [9]:

$$H(\%) = \frac{A_0 - A_t}{A_0} \times 100$$

Trong đó A_0 và A_t là độ hấp thụ của MO ban đầu và thời điểm t.

Độ hấp thụ của MO được xác định theo phương pháp đo quang trên máy UV-Vis Agilent 8453. Với môi trường pH = 7 và pH = 8, độ hấp thụ quang được đo tại bước sóng $\lambda_{max} = 464$ nm. Mặt khác, với

pH = 2, A được đo tại bước sóng λ_{max} = 508 nm.

3. KẾT QUẢ VÀ THẢO LUẬN

3.1. Giản đồ nhiễu xạ tia X - XRD

Phố XRD (hình 1) của cả vật liệu Al/Al₂O₃/TiO₂ (hình 1a) và Al/Al₂O₃/TiO₂-Ag (hình 1b) đều cho thấy Ti O_2 tồn tai ở dang pha anatase. Ngoài ra, còn thấy có những tín hiệu của pha kim loại Ti (2 $\theta \approx$ $38,44^{\circ}$, $40,18^{\circ}$, $53,02^{\circ}$) [12] và Al ($2\theta \approx 44,67^{\circ}$, 65,02°) [11]. Do sự pha tạp Ag, cường độ các pic của pha anatase tăng lên rõ rệt (các pic đặc trưng của pha anatase tại $2\theta \approx 25,3^{\circ}, 37,1^{\circ}, 48,19^{\circ}, 55^{\circ},$ 62,79° và 68,77°) [5, 10]. Thêm vào đó xuất hiện những pic mới ở $2\theta \approx 31,5^{\circ}$, $51,5^{\circ}$ [4]. Không tìm thấy tín hiệu nhiễu xạ của Ag riêng rẽ, chứng tỏ lượng Ag đã được phân tán rất đồng đều vào các trung tâm hoat tính của các hat TiO₂ và ngăn cản sư phát triển có đinh hướng của các hat TiO₂. Cường độ nhiễu xạ tăng lên chứng tỏ sự tạo thành các tinh thể anatase lớn hơn khi pha tạp Ag.

Có thể thấy việc pha tạp Ag vào TiO₂ đóng vai trò quan trọng, điều khiển quá trình tinh thể hóa chọn lọc cho pha anatase trong quá trình sol-gel. Do Ag có bán kính ion (1,26 Å) lớn hơn so với Ti (0,605 Å) nên khi được pha tạp vào mạng tinh thể TiO₂, chúng thay thế Ti⁴⁺, đám mây điện tử trong TiO₂ sẽ liên kết lỏng lẻo hơn, thích hợp cho sự tạo thành pha anatase (ngược lại với cấu trúc sắp xếp chặt chẽ thích hợp cho sự tạo thành pha rutile) [4, 5]. Giữa 2 dạng tinh thể chính của TiO₂ anatase và rutile, thì pha anatase thể hiện hoạt tính quang xúc tác cao khi phân hủy hầu hết các chất hữu cơ ô nhiễm trong nước và không khí, trong khi hoạt tính này yếu với pha rutile.

Như vậy, vật liệu Al/Al₂O₃/TiO₂–Ag với số lượng và kích thước tinh thể pha anatase lớn là một trong những nguyên nhân làm cho vật liệu có hoạt tính quang xúc tác cao.

Hình 1: Giản đồ XRD của vật liệu Al/Al₂O₃/TiO₂ (a) và Al/Al₂O₃/TiO₂-Ag (b)

Hình 2: Ảnh FESEM bề mặt Al/Al₂O₃ (a) và Al/Al₂O₃/TiO₂-Ag (b)

3.2. Phổ tán xạ năng lượng tia X-EDS

Phổ EDS của mẫu $Al/Al_2O_3/TiO_2$ -Ag (hình 3) cho thấy pic của Ag cùng với pic của các nguyên tố cơ bản khác Ti, O và Al. Điều này chứng tỏ phương pháp nhúng phủ sol–gel đã pha tạp thành công Ag trên màng $Al/Al_2O_3/TiO_2$.

Hình 3: Ảnh EDS mẫu Al/Al₂O₃/TiO₂-Ag

3.3. Ảnh hiển vi điện tử quét – FESEM

Hình 2a cho thấy, quá trình anot hóa cho bề mặt Al_2O_3 có độ đồng nhất cao. Lớp màng Al_2O_3 đạt được có cấu trúc lỗ xốp đồng nhất, độ trật tự cao và hầu như có cấu trúc hexagonal [7, 8]. Cấu trúc lỗ xốp tạo thành này chính là cơ sở cần thiết và thuận lợi cho dung dịch sol bám vào bề mặt Al/Al_2O_3 và sau đó là các hạt TiO₂–Ag [1]. Quan sát hình 2b, sau khi phủ lớp dung dịch sol vào các lỗ xốp Al_2O_3 và tiến hành nung luyện thu được các hạt TiO₂ có cấu trúc bát diện. Các hạt này có kích thước thay đổi từ nhỏ tới lớn. Hạt nhỏ bám chắc vào cấu trúc lỗ xốp của Al_2O_3 . Những hạt lớn hơn trên bề mặt khả năng bám chắc kém hơn.

3.4. Phổ tán xạ phản xạ - DRS

Kết quả ghi phổ DRS (hình 4) cho thấy, vật liệu Al/Al₂O₃/TiO₂-Ag có độ phản xạ giảm mạnh ở vùng khả kiến 400-700 nm so với vật liệu Al/Al₂O₃/TiO₂. Điều đó chứng tỏ độ hấp thụ quang của vật liệu Al/Al₂O₃/TiO₂-Ag tăng mạnh trong vùng này. Nói cách khác, đã có sự dịch chuyển vùng hấp thụ của vật liệu xúc tác quang Al/Al₂O₃/TiO₂-Ag từ vùng ánh sáng tử ngoại UV sang vùng ánh sáng khả kiến Vis. Như vậy, việc pha tạp Ag đóng vai trò quan trọng tạo nên vật liệu xúc tác quang hóa khả kiến Al/Al₂O₃/TiO₂-Ag.

Phổ DRS cũng cho thấy, vật liệu xúc tác quang hóa khả kiến rất phù hợp dùng cho phản ứng quang phân hủy MO với các cực đại hấp thụ ở bước sóng 464 và 508 nm.

Hình 4: Phố tán xạ phản xạ DRS của vật liệu Al/Al₂O₃/TiO₂ và Al/Al₂O₃/TiO₂-Ag

3.5. Sự có mặt của Ag ảnh hưởng đến hoạt tính quang xúc tác

Hình 5 đưa ra kết quả khảo sát hiệu suất của

phản ứng quang phân hủy MO dưới tác dung của ánh sáng mặt trời trên hai mẫu vật liệu: không pha tạp Ag (M1) và có pha tạp Ag (M2). Nhận thấy, với sự pha tạp kim loại Ag, hiệu suất (H) của phản ứng quang phân hủy MO tăng lên rõ rệt. H > 10 % sau 2 giờ và đạt ~ 22 % sau 10 giờ. Sự tăng mạnh hiệu suất phản ứng của vật liệu quang xúc tác Al/Al₂O₃/TiO₂-Ag có thể được giải thích như sau: kim loại chuyển tiếp Ag được đưa vào TiO₂ có tác dụng làm hẹp độ rộng vùng cấm do sự lai hóa các orbitan d giữa Ti và nguyên tố Ag. Mặt khác chúng đóng vai trò như các "bẫy" điện tử và "bẫy" lỗ trống, tăng cường sự chia tách lỗ trống – điện tử. Các điện tử bị mắc kẹt trên bẫy điện tử tương tác với O₂ tạo thành các phân tử hoạt động $(O_2^{\bullet}, {}^{\bullet}OH)$ [6]. Do đó làm tăng hiệu suất phản ứng quang xúc tác phân hủy MO. Nhưng mặt khác, khi nồng đô pha tạp đạt đến giá tri nào đó thì các "bẫy" điện tử lai đóng vai trò như các tâm tái hợp của các cặp "điện tử - lỗ trống" làm giảm khả năng quang xúc tác của vật liệu [6]. Với vật liệu nghiên cứu ở đây, hàm lượng Ag pha tạp 1,5 % cho hiệu quả quang xúc tác tối ưu nhất.

Hình 5: Sự có mặt của Ag ảnh hưởng đến hoạt tính quang xúc tác của vật liệu. M1: Al/Al₂O₃/TiO₂; M2: Al/Al₂O₃/TiO₂-Ag

3.6. Ảnh hưởng của H_2O_2 đến hoạt tính quang xúc tác

Hình 6 trình bày kết quả khảo sát hiệu suất của phản ứng quang phân hủy MO dưới tác dụng của ánh sáng mặt trời với 3 mẫu. Mẫu M1 chỉ có vật liệu Al/Al₂O₃/TiO₂-Ag, M2 chỉ thêm H₂O₂ và M3 gồm cả M1 và M2. Với mẫu M1, H đạt ~ 22 % sau 10 giờ. Với mẫu M2, hiệu suất phản ứng phân hủy thấp hơn, H chỉ đạt ~ 14 % sau 10 giờ. Trong khi đó, với mẫu M3 sử dụng tổ hợp vật liệu xúc tác $\label{eq:al_Al_2O_3/TiO_2-Ag} \begin{array}{l} va \\ H_2O_2 \end{array} \mbox{cho} hiệu quả cao hơn đáng kể, H đạt tới <math display="inline">\sim 42$ % sau 10 giờ.

Hình 6: Ảnh hưởng của H₂O₂ đến hoạt tính quang xúc tác của vật liệu. M1: Al/Al₂O₃/TiO₂-Ag; M2: 1 ml H₂O₂ 9%; M3: M1+ M2

Hiệu suất quang phân hủy mẫu chứa 3 mg MO là tối ưu khi kết hợp vật liệu $Al/Al_2O_3/TiO_2-Ag$ 24 cm² và 1 ml H₂O₂ 9 %. Tuy nhiên khi thêm lượng H₂O₂ lớn hơn, không thấy hiệu quả cao hơn. Nguyên nhân là do sự có mặt nhiều của gốc •OH sẽ dẫn tới sự tái kết hợp các gốc tự do •O₂⁻, •OH, •OH₂ tạo thành nước, bên cạnh đó H₂O₂ sẽ tương tác với •OH làm giảm một phần lượng •OH [8].

3.7. Ảnh hưởng của pH đến hoạt tính quang xúc tác

Nghiên cứu này khảo sát ảnh hưởng của pH đến hiệu suất phản ứng quang phân hủy MO bởi vật liệu Al/Al₂O₃/TiO₂-Ag với sự có mặt của H₂O₂ dưới tác dụng của ánh sáng mặt trời. Kết quả (hình 7) cho thấy tốc đô và hiệu suất phản ứng trong môi trường axit pH = 2 cao hon hẳn so với trong môi trường trung tính pH = 7 và môi trường kiểm pH = 8. Tai pH = 2, chỉ sau 6 giờ, H đã đạt tới ~ 86 %. Trong khi tại pH = 8, H đạt được > 50 % và tại pH = 7, H chỉ đạt ~ 42 % sau 10 giờ. Tốc độ và hiệu suất phản ứng cao trong môi trường axit là do tăng cường sự hấp phụ của MO lên bề mặt TiO₂ mang điện dương. Thêm vào đó, sư tái kết hợp electron – lỗ trống được giảm thiểu. Trong môi trường kiềm và trung tính, cả MO và bề mặt TiO₂ mang điện tích âm do đó tốc đô và hiệu suất quang phân hủy giảm đi [5].

Mặt khác, trong môi trường pH = 7, Al(OH)₃ có thể được tạo thành trên bề mặt xúc tác dẫn tới thụ động hóa và làm giảm hoạt tính xúc tác quang [8]. Trong môi trường kiềm yếu pH = 8, giai đoạn đầu

tốc độ tạo thành $Al(OH)_3$ lớn hơn, nên trong 6 giờ đầu tốc độ phản ứng quang xúc tác thấp hơn. Sau đó $Al(OH)_3$ này lại bị hòa tan dần trong kiềm, nên bề mặt xúc tác lại trở nên hoạt tính [7].

Hình 7: Ảnh hưởng của pH đến hoạt tính quang xúc tác của vật liệu. M1: pH = 2; M2: pH = 7; M3: pH = 8

4. KÊT LUÂN

Đã tổng hợp thành công vật liệu xúc tác quang hóa khả kiến $Al/Al_2O_3/TiO_2$ -Ag. Chất mang Al/Al_2O_3 được tổng hợp bằng phương pháp điện hóa có cấu trúc lỗ xốp đồng đều, độ trật tự cao. Màng TiO_2 -Ag được tổng hợp bằng phương pháp sol-gel có cấu trúc pha tinh thể dạng anatase. Với lượng pha tạp tối ưu 1,5 % Ag, sự hấp thụ quang của vật liệu dịch chuyển từ vùng ánh sáng tử ngoại sang vùng ánh sáng khả kiến.

Vật liệu xúc tác quang hóa khả kiến $Al/Al_2O_3/TiO_2$ -Ag có hiệu suất quang phân hủy mẫu chứa 3 mg MO tới 86 % trong điều kiện: môi trường axit pH 2, diện tích bề mặt xúc tác 24 cm², thêm 1 ml H_2O_2 9 %, và sau 6 giờ dưới ánh sáng tự nhiên. Vật liệu xúc tác quang hóa khả kiến $Al/Al_2O_3/TiO_2$ -Ag rất phù hợp dùng để xử lý các chất hữu cơ ô nhiễm khó phân hủy, hứa hẹn để triển khai ứng dụng trong thực tế cho hiệu quả kinh tế cao.

TÀI LIỆU THAM KHẢO

 Ngô Thị Hồng Lê. Nghiên cứu chế tạo và tính chất của bán dẫn pha từ loãng TiO₂ anatase pha tạp Co bằng phương pháp sol- gel và phún xạ catot, Luận án

Liên hệ: Nguyễn Xuân Trường

Trường Đại học Bách khoa Hà Nội Số 1 Đại Cồ Việt, Hai Bà Trưng, Hà Nội E-mail: truong.nguyenxuan@hust.edu.vn. Tiến sĩ Khoa học vật liệu, Viện Khoa học và công nghệ Việt Nam (2011).

- Cao Xuân Thắng. Nghiên cứu quá trình chế tạo nano tinh thể TiO₂ ở nhiệt độ thấp, Luận án Tiến sỹ kỹ thuật, chuyên ngành Quá trình và thiết bị công nghệ hóa học, Trường Đại học Bách Khoa Hà Nội (2012).
- Gaoling Zhao, Hiromitsu Kozuka, Toshinobu Yoko. Sol-gel preparation and photoelectrochemical properties of TiO₂ films containing Au and Ag metalparticles, Thin solid films, 277, 147-154 (1995).
- Gaoling Zhao, Hiromitsu Kozuka and Toshinobu Yoko. Photoelectrochemical Properties of Dye-Sensitized TiO₂ Films Containing Dispersed Gold Metal Particle Prepare by Sol-Gel Method, Journal of the Ceramic Society of Japan, 103(3), 164-168 (1996).
- Haoyue Zhang, Nikica Maljkovic, Brian S. Mitchell. Structure and interfacial properties of nanocrystalline Aluminum/mullite composites, Materials Science and Engineering, A326, 317-323 (2002).
- H. H. Nersisyan, H. I. Won, C. W. Won, A. Jo, J. H. Kim. Direct magnesiothermic reduction of titanium dioxide to titanium powder through combustion synthesis, Chemical Engineering Journal, 235, 67-74 (2014).
- N. Venkatachalam, M. Palanichamy, V. Murugesan. Sol-gel preparation and characterization of alkaline earth metal doped nano TiO₂: Efficient photocatalytic degradation of 4-chlorophenol, Journal of molecular catalysis A: Chemical, 273, 177-185 (2007).
- Kumaresan Loganathan, Palanisamy Bommusamy, Palanichamy Muthaiahpillai, Murugesan Velayutham. *The syntheses, characterization, and photocatalytic activities of silver, platium and gold doped TiO₂ nanoparticles*, Environment Engineering research, **16(2)**, 81-90 (2011).
- Yoshie Ishikawa, Yasumichi Matsumoto. Electrodeposition of TiO₂ photocatalyst into nanopores of hard alumite, Electrochimica Acta, 46, 2819-2824 (2001).
- Rusmidah Ali, Wan Azelee Wan Abu Bakar & Lee Kin Teck. Zn/ZnO/TiO₂ and Al/Al₂O₃/TiO₂ Photocatalysts for the Degradation of cypermethrin, Modern Applied Science, 4(1), 59-67 (2010).
- M. Hamadanian, A. Reisi-Vanani and A. Majedi, I. R. Iran. Sol-Gel Preparation and Characterization of Co/TiO₂ Nanoparticles: Application to the Degradation of Methyl Orange, Chem. Soc., 7, 52-58 (2010).
- 12. Soumit S. Mandal and Aninda J. Bhattacharyya. *Electrochemical sensing and photocatalysis using* Ag–TiO₂ microwires, J. Chem. Sci., **124(5)**, 969-978 (2012).