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Abstract. Research on the dynamics and control of flexible link manipulators (FLMs) is
increasing in the industrial robotics, but the problem of inverse dynamics of the flexible
link manipulators has been paid a little attention. In this paper, an approximation method
is presented to calculate the reverse dynamics of the serial manipulators with rigid-flexible
links. The linearization of the motion equations for a rigid-flexible translation and rotation
of two-link manipulator (manipulator T-R) is addressed. The vibration control and calcu-
lating inverse dynamics of a periodic rigid-flexible two-link manipulator T-R are studied.
The Taguchi method is used for the design of gain values of the controller PD for the ma-
nipulator. The results of numerical simulation show the efficiency and usefulness of the
proposed method.

Keywords: flexible manipulator, linearization, Floquet theory, vibration control, Taguchi
method, inverse dynamics.

1. INTRODUCTION

The modeling and control of flexible manipulators are increasing in industrial robot-
ics research. Recent valuable reviews on dynamics and control of flexible robots related
to the existing works till 2016 are provided in some articles [1–4]. According to these
works, the stability and vibration analysis of flexible robots have been little studied. It
should be noted that in many applications of robot design and control, the computation
of the full flexible model of a robot is not necessary, while the knowledge of its natural
frequencies is required.
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The forward dynamics problems of flexible manipulators have been considered in
articles [5–10]. In which force/moments of the joint links are known quantities, and
motions of the joint links are the quantities to be found. In [11–15], the inverse dynamics
of flexible manipulators have been studied in the problems of set-point regulation.

In general terms, an inverse dynamic problem for a serial manipulator is the problem
of finding the joint torques that will produce a given motion of the end-effector. The
inverse dynamics is originally designed to control the robotic manipulator. If the desired
motion of the rigid manipulator is chosen as the fundamental motion, the equation for
the error dynamics of a flexible manipulator in the first order approximation has the same
form as [16–18]

ẋ = A(t)x + f(t).

Motion control problems of flexible manipulators can be divided into two classes:
regulation and tracking control. The regulation is the control problem around the desired
equilibrium configuration of manipulators, in which the regulation qd is constant and
q̇d = q̈d = 0. If the equilibrium configuration of a rigid manipulator is chosen as the
fundamental motion, the matrix A is a constant matrix. If the desired motion of the joint
coordinates qd(t), velocity q̇d(t), and acceleration q̈d(t) are periodic function, the matrix
A(t) is a periodic matrix.

Robots with flexible links are vibration systems. Therefore, the most important prob-
lem in robots with flexible links is the problem of determining the natural frequencies
(when A is a constant matrix) or the dynamic stability domain (when A(t) is a periodic
matrix). When studying the dynamics of a multi-body system with flexible links [19],
Briot and Khalil have written: “In many applications of robot design and control, the
computation of the full electrodynamic model of a robot is not necessary, while the
knowledge of its natural frequencies is required”. We completely agree with this think-
ing. It can be said that the above thinking is the basic idea of this paper.

For the serial manipulator with rigid links, if the end-effector motion is known, in-
verse dynamics allows computation of the joint torques to the joints to obtain the desired
motion of the end-effector. For the serial manipulator with flexible links, if the end-
effector motion is known, we can not calculate the desired motion of the end-effector.
Because we don’t know the motion of the elastic coordinates. The inverse dynamics
analysis for flexible robots by tracking control has been little studied, and the dynamic
stability control of flexible manipulators is presently still an open problem. Robots with
elastic links are vibration systems. Therefore, the most important problem in robots with
flexible links is the problem of determining the natural frequencies, if the matrix A is a
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constant matrix or determining the dynamic stability domain if the matrix A(t) is a peri-
odic matrix. The main contribution of this paper is the study of dynamic stability control
and the calculation of periodic vibration of a rigid-flexible two-link manipulator. Then it
is possible to calculate the approximate force/torque of the actuators of the rigid-flexible
two-link manipulator T-R.

2. LINEARIZATION OF THE MOTION EQUATIONS ABOUT THE
FUNDAMENTAL MOTION

Let us consider now the vertical-planar motion of a rigid-flexible two-link transla-
tion and rotation manipulator (manipulator T-R) shown in Fig. 1, where the rigid link
OB (link 1) is assumed to be uniform. The link DE (link 2) in Fig. 1(a) is rigid link. The
link DE (link 2) in Fig. 1(b) is flexible link. The flexible link DE in Fig. 1(b) is clamped to
the rigid moving base and assumed to be thin, uniform, and satisfies the Euler–Bernoulli
beam assumptions of small shear and rotary inertia effects. Both links are connected by
disc B which moves on the plane. The payload mass at the free end of link 2 can move
without friction relative to the link using a force actuator. Using the floating frame of ref-
erence approach [1], the motion equations of some two-link rigid-flexible manipulators
are derived in reference [20].
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Fig. 1. Manipulator T-R

In this section, we focus on the linearization of motion equations of flexible manipu-
lator based on inverse dynamics of the virtual rigid motion of flexible link which is given
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in [20]. The differential equations of motion of the two-link rigid-flexible manipulator
can be expressed in the compact matrix form [15, 18]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ(t), (1)

where q, q̇ and q̈ are the generalized coordinates, velocities, and accelerations, respec-
tively. For simplicity, we choose an elastically generalized coordinate and denote it by qe.
The generalized coordinates, velocities, and accelerations of the rigid-flexible two-link
manipulator T-R have the following form [20]

q = [qa1, qa2, qe]
T , τ(t) = [τa1(t), τa2(t), τe(t)]

T = [τa1(t), τa2(t), 0]T . (2)

Let ∆qa1, ∆qa2 and ∆qe are the difference between the real motion q(t) and the fun-
damental motion qR(t), we have

y1(t) = ∆qa1 = qa1(t)− qR
a1(t), y2(t) = ∆qa2 = qa2(t)− qR

a2(t), y3(t) = ∆qe = qe(t), (3)

where y1, y2 and y3 are called the perturbed motion. Similarly, it follows that

τ(t) = [τa1(t), τa2(t), τe(t)]
T = [τa1(t), τa2(t), 0]T . (4)

The elements qR
a1(t), qR

a2(t) are given in [20].

By substituting Eqs. (3) into Eq. (1) and using Taylor series expansion around funda-
mental motion [20–22], then neglecting nonlinear terms, we obtain the system of linear
differential equations with time-varying coefficients for the single-link flexible manipu-
lator as follows

ML(t)ÿ + CL(t)ẏ + KL(t)y = hL(t). (5)

The matrices ML(t), CL(t), KL(t) and vector hL(t) of the linear differential equations
according to Eq. (5) have the following forms
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hL(t) =

 0
0

−µgC1 cos qR
a2 − µC1q̈R

a1 cos qR
a2 − (µrC1 + µD1) q̈R

a2

 . (9)

Table 1. Parameters of the manipulator

Parameters of the model Variable and unit Value

Length of link 1 l1(m) 0.1

Mass of link 1 m1(kg) 1.32

Mass of disc B mB(kg) 0.1

Radius of disc B r(m) 0.02

Mass moment of inertia of disc B JB(kg m2) 4.5 × 10−5

Length of link 2 l2 (m) 0.3

Cross-sectional area of link 2 A(m2) 2 × 10−5

Density of link 2 ρ(kg/m3) 7850

Modulus of link 2 E(N/m2) 7.11 × 1010

Inertial moment of sectional area of link 2 I(m4) 1.67 × 10−12

Drag coefficient α1(N m s/rad) 0.02

Drag coefficient α2(N m s/rad) 0.01

For numerical simulation, the parameters of the considered flexible manipulator are
listed in Table 1. From the parameters in Table 1, we have

C1 = −0.2348772632, D1 = −0.0511900094,
n11 = 0.2999500508, k∗11 = 457.7890772, X1 = −1.999847202. (10)

3. DYNAMIC STABILITY CONTROL OF THE FLEXIBLE MANIPULATOR T-R
USING THE FLOQUET THEORY

3.1. Calculating Floquet multipliers of linear differential systems with time-periodic
coefficients

In the steady of a flexible manipulator, the matrices ML(t), CL(t), KL(t) and vec-
tor hL(t) of the linear differential equations (5) are time-periodic with the least period
T = 2π/Ω. For calculation of dynamic stability condition, we shall consider a system of
homogeneous linear differential equations

ML(t)ÿ + CL(t)ẏ + KL(t)y = 0. (11)
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According to Floquet theory [16,17], the characteristic equation of Eq. (11) is indepen-
dent of the chosen fundamental set of solutions. From the parameters of the manipulator
given in Table 1, we can determine the Floquet multipliers ρk(k = 1, . . . , n) of the system
of differential equations (11) according to the algorithm presented in the document [23].
If |ρk| < 1, the trivial solution y = 0 of Eq. (11) will be asymptotically stable. Conversely,
the solution y = 0 of Eq. (11) becommes unstable if at least one Floquet multiplier has
modulus being larger than 1. In this case, we need to design the controller for stabilising
the motion of the flexible manipulator. Some calculation results of the maximum value
of the Floquet multipliers are listed in Table 2.

Table 2. Modulus of Floquet multipliers for four cases

Case 1: Ω = π |ρ1| = 1, |ρ2| = 22.6578, |ρ3| = 0.1304, |ρ4| = 0.9293, |ρ5| = 0.9293, |ρ6| = 0.9729

Case 2: Ω = 2π |ρ1| = 1, |ρ2| = 10.8771, |ρ3| = 0.9864, |ρ4| = 0.0893, |ρ5| = 0.9844, |ρ6| = 0.9844

Case 3: Ω = 4π |ρ1| = 1, |ρ2| = 0.9935, |ρ3| = 0.9935, |ρ4| = 0.9934, |ρ5| = 0.9934, |ρ6| = 0.9934

Case 4: Ω = 8π |ρ1| = 1, |ρ2| = 0.9967, |ρ3| = 0.9967, |ρ4| = 1.0127, |ρ5| = 1.0127, |ρ6| = 0.9966

From Table 2 we see that if using the parameters of the manipulator given in Table 1,
the manipulator must work in the parametric resonance region. To avoid parametric
resonance, we must adjust the parameters of the manipulator so that the manipulator
works in the non-resonant region.

3.2. The PD controller

PD controller ∆τa applied on the drive links of manipulator can be selected according
to the following expression

∆τa = −KD

(
q̇a−q̇R

a

)
− KP

(
qa−qR

a

)
= −KDẏ − KPy. (12)

The linearized equation according to Eq. (5) now takes the form

ML(t)ÿ + CL(t)ẏ + KL(t)y = hL(t)− KDẏ − KPy. (13)

In which KD and KP are diagonal matrices with positive elements as

KD =

 kd1 0 0
0 kd2 0
0 0 0

 , KP =

 kp1 0 0
0 kp2 0
0 0 0

 . (14)

From Eqs. (13) and (14) yields

M(1)
L (t)ÿ + C(1)

L (t)ẏ + K(1)
L (t)y = h(1)

L (t), (15)
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where

M(1)
L (t) = ML(t), K(1)

L (t) = KL(t) + KP, C(1)
L (t) = CL(t) + KD, h(1)

L (t) = hL(t). (16)

Eq. (15) can then be expressed in the compact form as

ẋ = P(t)x + f(t), (17)

where we use the state variable x

x =

[
y
ẏ

]
, ẋ =

[
ẏ
ÿ

]
. (18)

The matrix of coefficients P(t) and vector f(t) are defined by

P(t) =

[
0 E

−M(1)−1

L K(1)
L −M(1)−1

L C(1)
L

]
, f(t) =

[
0

M(1)−1

L h(1)
L

]
. (19)

To study the dynamic stability conditions of flexible manipulators, we need to inves-
tigate the properties of the homogeneous linear differential system that corresponds to
Eq. (17)

ẋ = P(t)x, (20)

where P(t) is a continuous matrix with period T. Based on the stable criteria according
to Floquet multipliers, a numerical algorithm for calculating the Floquet multipliers was
presented in [23]. The gain values of the PD controller are chosen so that absolute values
of Floquet multipliers are less than 1.

3.3. A procedure for determination of gain values according to Floquet multipliers
using the Taguchi method

Taguchi developed the orthogonal array method to study the systems in a more con-
venient and rapid way, whose performance is affected by different factors when the sys-
tem study becomes more complicated with the increase in the number of factors [24–28].
This method can be used to select the best results by optimization of parameters with
a minimum number of test runs. We note that the Taguchi method has the following
advantages: It is not necessary to use the derivative of the target function to calculate op-
timal parameters, and the method allows the determination of multiple stable parameters
for the linear differential systems with time-periodic coefficients of complex structures.

This subsection aims to present numerical results that verify the procedure discussed
above by using the Taguchi method.
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Step 1: Selection of control parameters and initial levels of control parameters

The control parameters are chosen as components of two matrices of additional con-
trol torques

KP =

 kp1 0 0
0 kp2 0
0 0 0

 , KD =

 kd1 0 0
0 kd2 0
0 0 0

 . (21)

The gain values of PD controller are chosen as components of the vector of control
parameters which has the following form

x = [ x1 x2 x3 x4 ]T = [ kp1 kp2 kd1 kd2 ]T. (22)

Three initial levels of each control parameter are given in Table 3.

Table 3. Control parameters and initial levels of each control parameter

Levels
Control parameters

kp1 kp2 kd1 kd2

1 0.1 0.01 0.01 0.01
2 3 0.2 5 0.1
3 10 25 30 35

Step 2: Calculation of Floquet multipliers and selection of target function

The Floquet multipliers of the differential equations (20) are calculated to the numer-
ical algorithms in [24] and can be arranged in a vector as follows

ρ = [ ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ]T. (23)

Step 3: Selection of orthogonal array and calculation of signal-to noise ratio (SNR)

Three levels of each control parameter are applied, necessitating the use of an L9
orthogonal array [24, 25]. Coding stage 1, stage 2, stage 3 of the control parameters are
the symbols 1, 2, 3. The signal-to noise ratio (SNR) of the vector of control parameters x
is calculated according to the following formula [24, 26]

ηj = (SNR)j = −10 log10(|ρmax|j − ρd)
2, j = 1, 2, . . . , 9 (24)

where |ρmax|j is the biggest modulus of Floquet multipliers in the jth experiment, and
ρd is the target Floquet multiplier. The desired value of the target Floquet multipliers is
usually chosen empirically. In this example we choose ρd = 0.4. The obtained results are
shown in the Table 4.



Vibration control and calculating inverse dynamics of the rigid-flexible two-link manipulator T-R 177

Table 4. Experimental design using L9 orthogonal array

Trial (j)
Control parameters Results

kp1 kp2 kd1 kd2 |ρ|max SNR

1 1 1 1 1 0.9797 21.9716
2 1 2 2 2 0.9607 24.3338
3 1 3 3 3 0.9934 20.5969
4 2 1 2 3 0.9995 20.0417
5 2 2 3 1 0.8180 21.7272
6 2 3 1 2 0.9798 21.9636
7 3 1 3 2 0.8405 24.5169
8 3 2 1 3 0.9887 21.0389
9 3 3 2 1 0.9473 26.4990

Step 4: Analysis of signal-to-noise ratio

From the values of SNR of control parameters in the Table 4 we can calculate the
mean value of the SNR of control parameters corresponds to the levels 1, 2, 3

SNR
(

k1
p1

)
= [SNR(1) + SNR(2) + SNR(3)]/3 = 22.30077,

SNR
(

k2
p1

)
= [SNR(4) + SNR(5) + SNR(6)]/3 = 21.24417,
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(
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)
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(
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of the control parameters k1
p1, k2

p1, k3
p1, k1

d1, k2
d1, k3

d1, k1
p2, k2

p2, k3
p2, k1

d2, k2
d2, k3

d2 at the levels 1, 2,
3, respectively.

Fig. 2. Diagram of level distribution of mean signal-to-noise ratio of the control parameters

Then the signal-to noise ratio (SNR) of the control parameters can be plotted to use
for optimization of seat displacement as shown in Fig. 2. From Fig. 2, the optimal signal-
to-noise ratio of the control parameters can be derived as follows

SNR(kp1)=24.01827, SNR(kp2)=23.01983, SNR(kd1)=23.62483, SNR(kd2)=23.60477. (25)

Step 5: Selection of new levels for control parameters

It can be seen from Eq. (25) that the optimal values of SNR(kpi) and SNR(kdi) perform
iterative calculation. Firstly, new levels for control parameters are selected. Based on the
level distribution diagram of the parameter as shown in Fig. 2, we choose the new levels
of control parameters as follows: The optimal parameters are levels with the largest value
of the parameters, namely, kp1 level 3, kp2 level 3, kd1 level 2, kd2 level 2. Therefore, we
have the values of the new levels as follows:

If level 1 is optimal then the next levels are
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New level 1 level 1 level 2 level 3
New level 3New level 2

level 2 new = level 1 old

level 1 new = level 1 old − level 2 old − level 1 old
2

level 3 new = level 1 old +
level 2 old − level 1 old

2

If level 2 is optimal then the next levels are

New level 1
level 1 level 2 level 3

New level 3New level 2
level 2 new = level 2 old

level 1 new = level 2 old − level 2 old − level 1 old
2

level 3 new = level 2 old +
level 3 old − level 2 old

2

If level 3 is optimal then the next levels are

New level 1
level 1 level 2 level 3 New level 3

New level 2
level 2 new = level 3 old

level 1 new = level 3 old − level 3 old − level 2 old
2

level 3 new = level 3 old +
level 3 old − level 2 old

2

According to the rule presented above, we have the new levels of control parameters
as shown in Table 5.

Table 5. Control factors and new levels of control parameters

Levels
Control parameters

kp1 kp2 kd1 kd2

1 6.5 12.6 2.5 0.055
2 10 25 5 0.1
3 13.5 37.4 17.5 17.55

Then the analysis of signal-to-noise ratio (SNR) is performed as Step 2.
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Step 6: Check the convergence condition of the signal-to-noise ratio (SNR) and determine the
optimal control parameters

After 60 iterations, we obtain the optimal noise values of the control parameters. The
calculation results are shown in Table 6.

Table 6. SNR values of the control parameters and ANOM and ANOVA in the row of the SNR

Trial
Calculation Results

SNR (kp1) SNR (kp2) SNR (kd1) SNR (kd2) Mean Variance

1 5.6523 5.7342 6.4098 5.849 5.911325 0.087707237
2 14.3583 20.3713 14.634 14.4645 15.957025 6.504942857
3 22.118 20.6996 23.6227 19.0499 21.37255 2.866608863
4 30.0972 35.592 31.9126 44.4944 35.52405 30.74126709
5 38.3261 41.7656 39.2035 37.4125 39.176925 2.634760812

. . . . . . . . . . . . . . . . . . . . .
56 137.2585 137.2585 137.2585 137.2585 137.2585 0
57 137.2585 137.2585 137.2585 137.2585 137.2585 0
58 137.2585 137.2585 137.2585 137.2585 137.2585 0
59 137.2585 137.2585 137.2585 137.2585 137.2585 0
60 137.2585 137.2585 137.2585 137.2585 137.2585 0

To determine the mean and variance of SNR we use the following formulas

Mean =
SNR(kp1) + SNR(kp2) + SNR(kd1) + SNR(kd2)

4
, (26)

Variance =
[SNR(kp1)− Mean]2 + [SNR(kp2)− Mean]2

4

+
[SNR(kd1)− Mean]2 + [SNR(kd2)− Mean]2

4
.

(27)

According to the above analysis, we obtain the optimal parameters of after 60 itera-
tions. The optimal control parameters are given as follows

kp1 = 9.0838, kp2 = 0.1057, kd1 = 20.478, kd2 = 0.0026. (28)

Using these values, it is easy to find the Floquet multipliers of Eq. (20) as follows

ρ1 = 0.4000, ρ2 = 0.0607 + 0.3168i, ρ3 = 0.0607 − 0.3168i,

ρ4 = −0.0001 + 0.0000i, ρ5 = 0, ρ6 = 0.
(29)
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From Eqs. (29) yields modulus of Floquet multipliers

|ρ1| = 0.4, |ρ2| = 0.3226, |ρ3| = 0.3226, |ρ4| = 0.0001, |ρ5| = 0, |ρ6| = 0. (30)

3.4. Determine control parameters in a number of common speed ranges

We choose the desired motion rule of the active links in the following form

qa1 = 0.025 cos(Ωt), qa2 = π/4 cos(Ωt). (31)

Using the algorithm presented in paragraph 3.3, we can determine the control pa-
rameters corresponding to some popular speed ranges as follows Table 7.

Table 7. Control parameters in several speed ranges

Ω ρd kp1 kp2 kd1 kd2

π 0.4 9.0838 0.1057 20.478 0.0026
2π 0.4 14.8229 0.1296 17.5 0.065
4π 0.5 11.7505 0.0764 6.1743 0.064
8π 0.75 7.3226 0.1064 8.0228 0.0604
9π 0.9 13.8598 0.0507 28.4096 0.0525

The transition oscillation of the system depends on the initial conditions. For illus-
tration, we assume that the initial conditions are chosen as follows

t = 0 : x(0) = [ 0 0 0.25π 0.25π2 ]T. (32)

We calculate transient vibration of the flexible manipulator with the parameters given
in Table 7. Some calculation results of the transient vibration are shown in Figs. 3, 4, 5
and 6.
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Fig. 3. Transient vibration of the flexible manipulator with control torque case Ω = π (rad/s)

From Figs. 3–6, we can see that with the selected control parameter, the transient
vibration of the flexible manipulator decreases to zero relatively quickly. In other words,
the dynamic stability of the flexible manipulator is guaranteed by a simple PD controller.



182 Nguyen Van Khang, Dinh Cong Dat

11 
 

 
Fig. 4.  Transient vibration of the flexible manipulator with control torque case  

 
      Fig. 5.  Transient vibration of the flexible manipulator with control torque case  

 
      Fig. 6.  Transient vibration of the flexible manipulator with control torque case  

From Figure 3-6, we can see that with the selected control parameter, the transient vibration of 
the flexible manipulator decreases to zero relatively quickly. In other words, the dynamic 
stability of the flexible manipulator is guaranteed by a simple PD controller. 

4. CALCULATION OF PERIODIC VIBRATION OF A FLEXIBLE MANIPULATOR 
The linearized differential equations of motion of the two-link rigid-flexible manipulator have 
the following form  
 .  (33) 
As known in the theory of linear differential equations [16, 17] when the system of 
homogeneous linear differential equations is asymptotically stable, then the system of 
differential equations having the right side (33) has periodic solution. Using the algorithm 
proposed by Khang et al. in [23], the periodic oscillation of the system of equations (33) can 
be calculated in the following form 

 .  (34) 

When the parameters KP and KD are chosen so that the system of homogeneous linear 
differential equations is asymptotically stable is stable quickly, the solution of equation (33) 
has the form 
 .  (35) 
Using the control parameters in Table 7, some simulation results of solutions of Eq. (23) are 
shown in Figs 7-9. 
  

2 ( / )rad spW =

4 ( / )rad spW =

8 ( / )rad spW =

(1) (1) (1) (1)( ) ( ) ( ) ( )L L L Lt t t tM y+ C y + K y = h&& &

* * *
1 2

È ˘= Í ˙Î ˚y y y

ª *y y

Fig. 4. Transient vibration of the flexible manipulator with control torque case Ω = 2π (rad/s)
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Fig. 6. Transient vibration of the flexible manipulator with control torque case Ω = 8π (rad/s)

4. CALCULATION OF PERIODIC VIBRATION OF A FLEXIBLE MANIPULATOR

The linearized differential equations of motion of the two-link rigid-flexible manip-
ulator have the following form

M(1)
L (t)ÿ + C(1)

L (t)ẏ + K(1)
L (t)y = h(1)

L (t). (33)

As known in the theory of linear differential equations [16, 17] when the system of
homogeneous linear differential equations is asymptotically stable, then the system of
differential equations having the right side (33) has periodic solution. Using the algo-
rithm proposed by Khang et al. [23], the periodic oscillation of the system of equations
(33) can be calculated in the following form

y∗ =
[

y∗
1 y∗

2
]

. (34)
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When the parameters KP and KD are chosen so that the system of homogeneous lin-
ear differential equations is asymptotically stable is stable quickly, the solution of equa-
tion (33) has the form

y ≈ y∗. (35)

Using the control parameters in Table 7, some simulation results of solutions of
Eq. (23) are shown in Figs. 7–9.
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From perturbed motions y, we call determine the generalized coordinates, velocities
and accelerations of the flexible manipulator

qai(t) ≈ qR
ai(t) + yi(t), i = 1, . . . , n; qej(t) = yn+j (j = 1, . . . , m). (36)
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5. CALCULATION OF INVERSE DYNAMICS OF THE FLEXIBLE MANIPULATOR
BASED ON THE LINEARIZATION

In previous sections, the stability analysis, and the calculation of periodic vibration
of the flexible manipulator have been studied. In this section an approximate approach
for calculation of inverse dynamics of flexible manipulator is proposed.

5.1. Determining the motion of the operating point E

From the periodic oscillation calculated above, we can find the elastic displacement
of the elastic beam DE

w(x, t) = X1(x)y3(t). (37)

From Eq. (37) we have the elastic displacement from point E

w(l2, t) = X1(l2)y3(t). (38)

Then the position of the point E on the elastic link is given as

xE(t) = l1 + (r + l2) cos(qR
a2 + y2)− w(l2, t) sin(qR

a2 + y2), (39)

yE(t) = qR
a1 + y1 + (r + l2) sin(qR

a2 + y2) + w(l2, t) cos(qR
a2 + y2). (40)

Using the control parameters in Table 7, some simulation results of the position of
point E are shown in Figs. 10–12. In Figs. 10–12, the solid lines represent the motion
graph of operation point E when the DE link is an elastic beam, the dashed lines represent
the motion graph of operation point E when the DE link is a rigid link.
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In Figures 10-12, the solid lines represent the motion graph of operation point E when the DE 
link is an elastic beam, the dashed lines represent the motion graph of operation point E when 
the DE link is a rigid link. 
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       Substitution of Eqs. (36) - (40) in differential equations of the manipulator T-R, we can 
obtain the actuator torques of the two-link rigid-flexible manipulator [20] 
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The elements  are given in reference [20]. Using the control parameters in Table 7, 
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Fig. 10. Motion graph of operating point E by Ω = π(rad/s)
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Fig. 12. Motion graph of operating point E by Ω = 4π(rad/s)

5.2. Calculating inverse dynamics of flexible manipulator

Substitution of Eqs. (36)–(40) in differential equations of the manipulator T-R, we can
obtain the actuator torques of the two-link rigid-flexible manipulator [20]

F = Fd1 + (m1 + m2 + mB)q̈a1 + [(
1
2

m2l2 + m2r) cos qa2 − µC1qe2 sin qa2]q̈a2 + µ cos qa2C1q̈e1

− (
1
2

m2l2 + m2r)q̇2
a2 sin qa2 − 2C1µq̇a2q̇e1 sin qa2 − µq̇2

a2C1qe1 cos qa2 + (m1 + m2 + mB)g,

(41)

τ = [(
1
2

m2l2 + m2r) cos qa2 − µC1qe1 sin qa2]q̈a1 + (JB + m2r2 + m2rl2 +
m2l2

2
3

+ µn11q2
e1)q̈a2

+ (µrC1 + µD1)q̈e1 + 2µn11q̇a2q̇e1qe1 + m2g(r +
l2
2
) cos qa2 − µg sin qa2C1qe1 + τd2.

(42)

The elements FR
a1(t), τR

a2(t) are given in reference [20]. Using the control parameters
in Table 7, some calculation results of actuator torque are shown in Figs. 13–15.

In Figs. 13–15, the solid lines represent the joint torques when the DE link is an elastic
beam, the dashed lines are the joint torques when the DE link is a rigid link. Through the
graphs, we can see that when the angular velocity of the joint links is larger, the graph
of the joint torques with elastic DE link is further away from the joint torque graph with
solid link.
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6. CONCLUSIONS

In the present paper, the linearization problem of the equation of motion of flexible
manipulator T-R in the vicinity of a fundamental motion is addressed. Then an approach
for the computation of dynamic stability control and the inverse dynamics of flexible
manipulators has been presented.

A procedure for the optimal design of control parameters of the homogeneous linear
differential equations having time-periodic coefficients is presented. In case the system
is unstable, a PD controller is added to stabilize the system. Then the optimal parameters
of the PD controller are found by Taguchi method. The proposed approach has been
successfully applied to a flexible manipulator T-R. On the basis of the calculation of the
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oscillation of the flexible manipulator, an algorithm for finding the actuator torques of
the flexible manipulator T-R has been implemented.

Through numerical simulation, the efficiency and usefulness of the proposed algo-
rithm were demonstrated. The algorithm presented in this paper can be applied to cal-
culate dynamic stability control and the inverse dynamics of flexible manipulators with
many elastic links.
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