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Abstract. The present investigation analyses the critical buckling studies of triple-walled
carbon nanotube using the Euler–Bernoulli model. The present study deals with three
different boundary conditions, namely, simply-simply, clamped-clamped, and clamped-
simply supported carbon nanotube. Using Bubnov–Galerkin and Petrov–Galerkin meth-
ods, the continuum model estimates the critical buckling load. The main advantage of
these two approximate methods is to obtain a quick and valid result. The first and second
Euler critical buckling loads decrease with the increase of length to outer diameter ratio
for boundary conditions like simply-simply, clamped-clamped, and clamped-simply sup-
ported. Interestingly, the increase in the length to outer diameter ratio results in the rise
in third Euler critical buckling for all three different boundary conditions. These two ap-
proximate methods provide reliable buckling load estimation using suitable polynomials.

Keywords: triple-walled carbon nanotube, Bubnov–Galerkin method, Petrov–Galerkin
method, buckling load.

1. INTRODUCTION

In 1991, Iijima [1] experimentally showed the carbon nanotube structure. Since then,
carbon nanotubes become popular among researchers to explore the mechanical, struc-
tural [2], and electrical properties [3,4]. Buckling [5,6] of structural members plays a cru-
cial role in understanding the elastic and inelastic behavior of the bar, beam, plate, and
shell. Batra and Sears [7] used continuum models to analyze the multi-walled carbon
nanostructures. The molecular simulations [8,9] provide reliable results in predicting the
mechanical/structural behaviors of nanostructures. But due to the substantial computa-
tional cost required to carry out the simulations using supercomputers, the continuum
models serve as an alternative approach. Elishakoff and Pentaras [10] investigated the
buckling analysis of double-walled carbon nanotube using three different boundary con-
ditions, namely simply-simply, clamped-clamped, and clamped-hinged support using
Bubnov–Glaerlkin and Petrov–Galerkin methods. Kitipornchai et al. [11] investigated the
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buckling studies of triple-walled carbon nanotube with elastic medium using polar co-
ordinates model. Guo et al. [12] studied the critical strain behavior of carbon nanotubes
using an atomic-scale finite element approach. Lu et al. [13] studied the effect of the
slenderness ratio in the buckling analysis of multi-walled carbon nanotubes. Rahmani
and Antonov [14] used the polar coordinates model for the buckling studies of single
and multi-walled carbon nanotubes by using the finite element approach. Coşkun [15]
computed the buckling loads of columns using various numerical methods. Pentaras
and Elishakoff [16] estimated the vibrational frequencies for triple-walled nanotube us-
ing Euler–Bernoulli’s continuum model. In their research investigation, the estimation
of frequencies happens using approximate methods like Bubnov–Galerkin and Petrov–
Galerkin method in a reliable manner.

Ru [17] investigated the critical buckling study of multi-walled carbon nanotube
using the van der Waals force effect. Later, Ru [18] studied the axial buckling effect
of double-walled carbon nanotubes. Further, Ru [19] examined the influence of elastic
medium support over critical buckling in the double-walled carbon nanotubes. Senthilku-
mar [20] used a semi-analytical method to study the single-walled carbon nanotube us-
ing Euler–Bernoulli’s model with nonlocal effects. Recently, Malikan et al. [21] inves-
tigated the buckling behavior of non-concentric double-walled carbon nanotubes. It
is often easy to model the simply-simply supported boundary conditions because the
analytical solutions are readily available. But other boundary conditions like clamped-
clamped, clamped-simply supported require numerical solutions for the buckling solu-
tions of triple-walled carbon nanotube. Elishakoff et al. [22] proposed the polynomials
to estimate critical buckling loads of double-walled carbon nanotubes for simply-simply,
clamped-clamped and clamped-simply supported boundary conditions using Bubnov–
Galerkin and Petrov–Galerkin methods. The present investigation extends it to triple-
walled carbon nanotubes. As per the author’s knowledge, the buckling studies of triple-
walled carbon nanotube with the Euler–Bernoulli model for different boundary condi-
tions are not available in the literature. This work aims to fill this void using quick and
reliable numerical solutions.

2. MATHEMATICAL MODEL OF TRIPLE-WALLED NANOTUBE

Elishakoff and Pentaras [10, 23] proposed the governing equations of double-walled
carbon nanotube with buckling behaviour using σE

x2 ≡ PE/(A1 + A2). In the present
study, the buckling behavoiur of third nanotube induced by considering the stress as
σE

x3 ≡ PE/(A1 + A2 + A3). So the mathematical model for triple-walled carbon nanotube
with buckling behaviour can be expressed as,

EI1
∂4w1

∂x4 + PE A1

AT3

∂2w1

∂x2 = c12(w2 − w1), (1)

EI2
∂4w2

∂x4 + PE A2

AT3

∂2w2

∂x2 = c23(w3 − w2)− c12(w2 − w1), (2)

EI3
∂4w3

∂x4 + PE A3

AT3

∂2w3

∂x2 = −c23(w3 − w2), (3)
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where w1, w2, and w3 are the transverse displacements of the innermost carbon nanotube,
middle carbon nanotube, and outer carbon nanotube, respectively. I1, I2, and I3 are the
moment of inertia of the innermost carbon nanotube, middle carbon nanotube, and outer
carbon nanotubes. A1, A2, and A3 are the innermost carbon nanotube, middle carbon
nanotube, and outer carbon nanotubes’ cross-sectional area. E, PE, L, c12, and c23 are
Young’s modulus, Euler’s buckling load of triple-walled carbon nanotube, length of the
nanotube, and the van der Waals interaction coefficients. Here AT3 is defined as AT3 =
(A1 + A2 + A3). It is interesting to note that when c23 = 0, A3 = 0, I3 = 0, and w3 = 0, the
present model leads to the buckling model of Elishakoff and Pentaras [10] for the double-
walled carbon nanotube. Using a non-dimensional approach, the governing equation of
triple-walled carbon nanotube takes form as,

d4W1

dX4 = β1(W2 − W1)−
(

αE
twn

) d2W1

dX2 , (4)

d4W2

dX4 = β2(W3 − W2) +

(
β1

δ1

)
(W1 − W2)−

(
αE

twn

)( ε1

δ1

)
d2W2

dX2 , (5)

d4W3

dX4 = β2

(
δ1

δ2

)
(W2 − W3)−

(
αE

twn

)( ε2

δ2

)
d2W3

dX2 , (6)

where
w1(X, t) = W1(X)eiωtwnt, w2(X, t) = W2(X)eiωtwnt, (7)

w3(X, t) = W3(X)eiωtwnt, X =
x
L

, (8)

αE
twn =

PE A1L2

EI1(A1 + A2 + A3)
, β1 =

c12L4

EI1
, β2 =

c23L4

EI2
, (9)

ε1 =
A2

A1
, ε2 =

A3

A1
, δ1 =

I2

I1
, δ2 =

I3

I1
. (10)

3. SIMPLY-SIMPLY SUPPORTED

For the triple-walled carbon nanotube with simply-simply supported boundary con-
ditions at both ends, the non-dimensional form converts as,

W1

∣∣∣∣
X=0

= 0,
d2W1

dX2

∣∣∣∣
X=0

= 0, W2

∣∣∣∣
X=0

= 0, (11)

d2W2

dX2

∣∣∣∣
X=0

= 0, W3

∣∣∣∣
X=0

= 0,
d2W3

dX2

∣∣∣∣
X=0

= 0, (12)

W1

∣∣∣∣
X=1

= 0,
d2W1

dX2

∣∣∣∣
X=1

= 0, W2

∣∣∣∣
X=1

= 0, (13)

d2W2

dX2

∣∣∣∣
X=1

= 0, W3

∣∣∣∣
X=1

= 0,
d2W3

dX2

∣∣∣∣
X=1

= 0. (14)

By ignoring the third nanotube’s effect as w3 = 0, the present boundary conditions con-
vert to double-walled nanotube’s criteria [23].
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4. CLAMPED-CLAMPED SUPPORTED

The non-dimensional form of clamped-clamped boundary conditions at both ends
for triple-walled carbon nanotube is,

W1

∣∣∣∣
X=0

= 0,
dW1

dX

∣∣∣∣
X=0

= 0, W2

∣∣∣∣
X=0

= 0, (15)

dW2

dX

∣∣∣∣
X=0

= 0, W3

∣∣∣∣
X=0

= 0,
dW3

dX

∣∣∣∣
X=0

= 0, (16)

W1

∣∣∣∣
X=1

= 0,
dW1

dX

∣∣∣∣
X=1

= 0, W2

∣∣∣∣
X=1

= 0, (17)

dW2

dX

∣∣∣∣
X=1

= 0, W3

∣∣∣∣
X=1

= 0,
dW3

dX

∣∣∣∣
X=1

= 0. (18)

5. CLAMPED-SIMPLY SUPPORTED

The triple-walled carbon nanotube with clamped-simply supported boundary con-
ditions satisfy the buckling behavior’s following non-dimensional boundary conditions.

W1

∣∣∣∣
X=0

= 0,
dW1

dX

∣∣∣∣
X=0

= 0, W2

∣∣∣∣
X=0

= 0, (19)

dW2

dX

∣∣∣∣
X=0

= 0, W3

∣∣∣∣
X=0

= 0,
dW3

dX

∣∣∣∣
X=0

= 0, (20)

W1

∣∣∣∣
X=1

= 0,
d2W1

dX2

∣∣∣∣
X=1

= 0, W2

∣∣∣∣
X=1

= 0, (21)

d2W2

dX2

∣∣∣∣
X=1

= 0, W3

∣∣∣∣
X=1

= 0,
d2W3

dX2

∣∣∣∣
X=1

= 0. (22)

6. APPROXIMATE METHODS

Since exact solutions are available for triple-walled carbon nanotube with simply-
simply supported boundary conditions as W1(X) = Y1 sin

(
πX
)
, W2(X) = Y2 sin

(
πX
)

[22] and W3(X) = Y3 sin
(
πX
)
, it results in quick analytical solutions. Based on the

suitable polynomial usage, the Bubnov–Galerkin method is classified here as Bubnov-
Galerkin-1 (B-G-1) and Bubnov-Galerkin-2 (B-G-2). In the present analysis, two approxi-
mate methods, namely Bubnov–Galerkin and Petrov–Galerkin, estimate critical buckling
loads. Since it is a triple-walled carbon nanotube, the results yield three critical buckling
loads. Three different boundary conditions, namely simply-simply supported, clamped-
clamped, and clamped-simply supported, are considered in the present study.
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In a generic approach, the Bubnov–Galerkin Method or Petrov–Galerkin Method
with weighted residual formulation using polynomial functions for any boundary con-
ditions of triple-walled carbon nanotube takes the form as,

∫ 1

0

∣∣∣∣∣∣
A11(X) A12(X) A13(X)
A21(X) A22(X) A23(X)
A31(X) A32(X) A33(X)

∣∣∣∣∣∣ψ(X)dX = 0, (23)

A11(X) =
d4W1(X)

dX4 + β1W1(X) +
(

αE
twn

) d2W1(X)

dX2 , (24)

A12(X) = −β1W2(X), A33(X) = 0, (25)

A21(X) = −
(

β1

δ1

)
W1(X), (26)

A22(X) =
d4W2(X)

dX4 +

(
β1

δ1

)
W2(X) +

(
αE

twn

)( ε1

δ1

)
d2W2(X)

dX2 , (27)

A23(X) = −β2W3(X), A31(X) = 0, A32(X) = −β2

(
δ1

δ2

)
W2(X), (28)

A33(X) =
d4W3(X)

dX4 + β2

(
δ1

δ2

)
W3(X) +

(
αE

twn

)( ε2

δ2

)
d2W3(X)

dX2 . (29)

Eq. (23) further reduces to the following form by utilising Eq. (24) to Eq. (29),

Atwn

(
αE

twn

)3
+ Btwn

(
αE

twn

)2
+ Ctwn

(
αE

twn

)
+ Dtwn = 0. (30)

Eq. (30) estimates three different values of αE
twn and using Eq. (9), the Euler critical buck-

ling loads for the innermost carbon nanotube, middle carbon nanotube, and outer nan-
otube are estimated.

7. SIMPLY-SIMPLY SUPPORTED AT BOTH ENDS

The present work uses the following polynomial functions for the first time by sat-
isfying the triple-walled carbon nanotube’s boundary conditions as simply-simply sup-
ported at both ends, and the Bubnov-Galerkin-1 uses the below polynomials as,

W1(X) = D1

(
1
12

X4 − 1
6

X3
+

1
12

X
)

, (31)

W2(X) = D2

(
1
12

X4 − 1
6

X3
+

1
12

X
)

, (32)

W3(X) = D3

(
1
12

X4 − 1
6

X3
+

1
12

X
)

, (33)

ψ
(4)
ss (X) =

(
1

12
X4 − 1

6
X3

+
1

12
X
)

. (34)
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It is interesting to note that the polynomials W1(X) = D1(−3X5
+ 10X3 − 7X),

W2(X) = D2(−3X5
+ 10X3 − 7X), and W3(X) = D3(−3X5

+ 10X3 − 7X) produce the
same results as previous polynomials results [Eq. (31) to Eq. (34)] using Bubnov-Galerkin-
1. Also, the polynomials W3 = 0, c23 = 0, W1(−X) and W2(−X) yields the results
of double-walled carbon nanotube proposed by Elishakoff et al [22]. For the Bubnov-
Galerkin-2, polynomials take form as W1(X) = D1(−X4

+ 2X3 −X), W2(X) = D2(−X4
+

2X3 − X), and W3(X) = D3(−X4
+ 2X3 − X). The Petrov–Galerkin (P-G) method eval-

uates the three critical buckling loads using W1(X) = D1(−X4
+ 2X3 − X), W2(X) =

D2(−X4
+ 2X3 − X), and W3(X) = D3(−X4

+ 2X3 − X) polynomials. The weight func-
tion assumes in the form of ψ

(3)
ss (X) = −X6

+ 5X3 − 4X. If the effect of the third carbon
nanotube attains as W3 = 0, W1(−X), W2(−X), and c23 = 0, the results estimate the
critical buckling loads of double-walled carbon nanotube [22].

7.1. Explicit exact critical buckling load of simply-simply supported at both ends

Using the trigonometric functions W1(X) = Y1 sin
(
πX
)
, W2(X) = Y2 sin

(
πX
)

[22]
and W3(X) = Y3 sin

(
πX
)
, the explicit expression of Exact solution is in form of Eq. (30)

by following steps from Eq. (23) to Eq. (29) results,

AExact
twn = −

(
π6ϵ1ϵ2

8δ1δ2

)
, (35)

BExact
twn =

(
π8ϵ1

8δ1

)
+

([
π4β2(ϵ1 + ϵ2)

]
8δ2

)
+

(
π8ϵ2

8δ2

)
+

([
π4β1ϵ2(1 + ϵ1)

]
8δ1δ2

)

+

(
π8ϵ1ϵ2

8δ1δ2

)
,

(36)

CExact
twn = −

(
π10ϵ2

8δ2

)
−
([

π6β1ϵ2
]
+
(
π6β2 [ϵ1 + ϵ2 + δ1]

)
8δ2

)

−
([

π2β1β2 (1 + ϵ1 + ϵ2)
]

8δ2

)
− π6β1ϵ2

8δ1δ2
−
(

π10ϵ1

8δ1

)
−
([

π6β1 (1 + ϵ1)
]

8δ1

)

−
(

π10

8

)
−
(

π6β2

8

)
,

(37)

DExact
twn =

(
π8β1

8δ1

)
+

(
π8β2δ1

8δ2

)
+

([
π4β1β2 (1 + δ1)

]
8δ2

)
+

(
π12

8

)

+

([
π8 (β1 + β2)

]
8

)
+

(
π4β1β2

8

)
.

(38)

The three different values of αE
twn from Eq. (30) compute the innermost, middle, and outer

nanotube’s exact Euler critical buckling load for the triple-walled carbon nanotube using
Eq. (9).
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7.2. Explicit critical buckling load based on Bubnov-Galerkin-1 method of simply-
simply supported at both ends
With the help of Eq. (31) to Eq. (34) for Bubnov-Galerkin-1 method, as mentioned

earlier, Euler critical buckling loads for innermost, middle, and outer nanotubes result
from solving Eq. (30) using Eq. (9). The relevent coefficients of Eq. (30) is in the form of,

ABG−1
twn = −

(
4913ϵ1ϵ2

128024064000δ1δ2

)
, (39)

BBG−1
twn =

(
289ϵ1

762048000δ1

)
+

(
[8959β2(ϵ1 + ϵ2)]

2304433152000δ2

)
+

(
289ϵ2

762048000δ2

)
+

(
[8959β1ϵ2(1 + ϵ1)]

2304433152000δ1δ2

)
+

(
289ϵ1ϵ2

762048000δ1δ2

)
,

(40)

CBG−1
twn = −

(
17ϵ2

4536000δ2

)
−
(
[527β1ϵ2] + (527β2 [ϵ1 + ϵ2 + δ1])

13716864000δ2

)
−
(
[16337β1β2 (1 + ϵ1 + ϵ2)]

41479796736000δ2

)
− 527β1ϵ2

13716864000δ1δ2

−
(

17ϵ1

4536000δ1

)
−
(
[527β1 (1 + ϵ1)]

13716864000δ1

)
−
(

17
4536000

)
−
(

527β2

13716864000

)
,

(41)

DBG−1
twn =

(
31β1

81648000δ1

)
+

(
31β2δ1

81648000δ2

)
+

(
[961β1β2 (1 + δ1)]

246903552000δ2

)
+

(
1

27000

)
+

(
[31 (β1 + β2)]

81648000

)
+

(
961β1β2

246903552000

)
.

(42)

7.3. Explicit critical buckling load based on Bubnov-Galerkin-2 method of simply-
simply supported at both ends
The Bubnov-Galerkin-2 method with appropriate polynomials discussed earlier re-

sults in the following explicit expression, and it is in the form of Eq. (30),

ABG−2
twn = −

(
4913ϵ1ϵ2

42875δ1δ2

)
, (43)

BBG−2
twn =

(
6936ϵ1

6125δ1

)
+

(
[8959β2(ϵ1 + ϵ2)]

771750δ2

)
+

(
6936ϵ2

6125δ2

)
+

(
[8959β1ϵ2(1 + ϵ1)]

771750δ1δ2

)
+

(
6936ϵ1ϵ2

6125δ1δ2

)
,

(44)

CBG−2
twn = −

(
9792ϵ2

875δ2

)
−
(
[2108β1ϵ2] + (2108β2 [ϵ1 + ϵ2 + δ1])

18375δ2

)
−
(
[16337β1β2 (1 + ϵ1 + ϵ2)]

13891500δ2

)
− 2108β1ϵ2

18375δ1δ2
−
(

9792ϵ1

875δ1

)
−
(
[2108β1 (1 + ϵ1)]

18375δ1

)
−
(

9792
875

)
−
(

2108β2

18375

)
,

(45)
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DBG−2
twn =

(
992β1

875δ1

)
+

(
992β2δ1

875δ2

)
+

(
[1922β1β2 (1 + δ1)]

165375δ2

)
+

(
13824

125

)
+

(
[992 (β1 + β2)]

875

)
+

(
1922β1β2

165375

)
.

(46)

Eq. (9) helps in the determination of Euler’s critical buckling load of Bubnov-Galerkin-2
by solving Eq. (30) for innermost, middle and outer nanotube using the above Eq. (43) to
Eq. (46).

7.4. Explicit critical buckling load based on Petrov-Galerkin-1 method of simply-simply
supported at both ends
The solution of Eq. (30) derived from the Petrov-Galerkin-1 method by utilizing

the relevant polynomials as discussed previously yields the three different Euler critical
buckling loads of triple-walled nanotube with the help of Eq. (9). The explicit expression
is in the form of,

APG−1
twn = −

(
2197ϵ1ϵ2

216δ1δ2

)
, (47)

BPG−1
twn =

(
4225ϵ1

42δ1

)
+

(
[28561β2(ϵ1 + ϵ2)]

27720δ2

)
+

(
4225ϵ2

42δ2

)
+

(
[28561β1ϵ2(1 + ϵ1)]

27720δ1δ2

)
+

(
4225ϵ1ϵ2

42δ1δ2

)
,

(48)

CPG−1
twn = −

(
48750ϵ2

49δ2

)
−
(
[10985β1ϵ2] + (10985β2 [ϵ1 + ϵ2 + δ1])

1078δ2

)
−
(
[371293β1β2 (1 + ϵ1 + ϵ2)]

3557400δ2

)
− 10985β1ϵ2

1078δ1δ2
−
(

48750ϵ1

49δ1

)
−
(
[10985β1 (1 + ϵ1)]

1078δ1

)
−
(

48750
49

)
−
(

10985β2

1078

)
,

(49)

DPG−1
twn =

(
380250β1

3773δ1

)
+

(
380250β2δ1

3773δ2

)
+

(
[85683β1β2 (1 + δ1)]

83006δ2

)
+

(
3375000

343

)
+

(
[380250 (β1 + β2)]

3773

)
+

(
85683β1β2

83006

)
.

(50)

8. CLAMPED AT BOTH ENDS

Since the exact solution is not available for clamped-clamped boundary conditions,
the Bubnov-Galerkin-1, Bubnov-Galerkin-2, and Petrov–Galerkin methods evaluate the
critical buckling loads based on different polynomials for triple-walled carbon nanotube.
The Bubnov-Galerkin-1 method computes the critical buckling loads of triple-walled car-
bon nanotube for clamped-clamped boundary conditions using the Filonenko-Borodich
trigonometric polynomials W1(X) = Y1

[
1 − cos

(
2πX

)]
, W2(X) = Y2

[
1 − cos

(
2πX

)]
[22], and W3(X) = Y3

[
1 − cos

(
2πX

)]
. Using the polynomials as
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W1(X) = D1

(
1
12

X4 − 1
6

X3
+

1
12

X2
)

, (51)

W2(X) = D2

(
1
12

X4 − 1
6

X3
+

1
12

X2
)

, (52)

W3(X) = D3

(
1
12

X4 − 1
6

X3
+

1
12

X2
)

, (53)

ψ
(4)
cc (X) =

(
1
12

X4 − 1
6

X3
+

1
12

X2
)

, (54)

the Bubnov-Galerkin-2 method estimates the critical buckling loads for the triple-walled
carbon nanotube. It is interesting to observe that the polynomials W1(X) = D1(−X4

+

2X3 − X2
), W2(X) = D2(−X4

+ 2X3 − X2
), and W3(X) = D3(−X4

+ 2X3 − X2
), used

in the Bubnov-Galerkin-2 estimates the same results as compared with earlier polyno-
mials [Eq. (51) to Eq. (54)]. In evaluating critical buckling loads for triple-walled car-
bon nanotubes using the Petrov–Galerkin method, the polynomials assume in the form
of W1(X) = D1(−X4

+ 2X3 − X2
), W2(X) = D2(−X4

+ 2X3 − X2
), and W3(X) =

D3(−X4
+ 2X3 − X2

). The weight function takes the form of ψ
(2)
cc (X) = 1 − cos

(
2πX

)
[22]. In the value of W3 = 0, W1(−X), W2(−X), and c23 = 0, the critical buckling load
yields the results of a double-walled carbon nanotube [22].

8.1. Explicit critical buckling load based on Bubnov-Galerkin-1 method of clamped at
both ends
Using the Filonenko–Borodich trigonometric polynomials discussed earlier, the

Bubnov-Galerkin-1 method results in the following explicit form by utilizing the steps
Eq. (24) to Eq. (30),

ABG−1
twn = −

(
8π6ϵ1ϵ2

δ1δ2

)
, (55)

BBG−1
twn =

(
32π8ϵ1

δ1

)
+

([
6π4β2(ϵ1 + ϵ2)

]
δ2

)
+

(
32π8ϵ2

δ2

)

+

([
6π4β1ϵ2(1 + ϵ1)

]
δ1δ2

)
+

(
32π8ϵ1ϵ2

δ1δ2

)
,

(56)

CBG−1
twn = −

(
128π10ϵ2

δ2

)
−
([

24π6β1ϵ2
]
+
(
24π6β2 [ϵ1 + ϵ2 + δ1]

)
δ2

)

−
([

9π2β1β2 (1 + ϵ1 + ϵ2)
]

δ2

)
− 24π6β1ϵ2

δ1δ2
−
(

128π10ϵ1

δ1

)

−
([

24π6β1 (1 + ϵ1)
]

δ1

)
−
(

128π10

1

)
−
(

24π6β2

1

)
,

(57)
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DBG−1
twn =

(
96π8β1

δ1

)
+

(
96π8β2δ1

δ2

)
+

([
18π4β1β2 (1 + δ1)

]
δ2

)
+

(
512π12

1

)

+

([
96π8 (β1 + β2)

]
1

)
+

(
18π4β1β2

1

)
.

(58)

The three different Euler’s critical buckling loads for Bubnov-Galerkin-1 results are esti-
mated by substituting the above expressions in Eq. (30) and Eq. (9).

8.2. Explicit critical buckling load based on Bubnov-Galerkin-2 method of clamped at
both ends
The explicit expression of Eq. (30) arranges in the following form with the usage of

Eq. (51) to Eq. (54) by adhereing the procedures from Eq. (23) to Eq. (29).

ABG−2
twn = −

(
432081216000ϵ1ϵ2

δ1δ2

)
, (59)

BBG−2
twn =

(
ϵ1

10287648000δ1

)
+

(
[β2(ϵ1 + ϵ2)]

5184974592000δ2

)
+

(
ϵ2

10287648000δ2

)
+

(
[β1ϵ2(1 + ϵ1)]

5184974592000δ1δ2

)
+

(
ϵ1ϵ2

10287648000δ1δ2

)
,

(60)

CBG−2
twn = −

(
ϵ2

244944000δ2

)
−
(
[β1ϵ2] + (β2 [ϵ1 + ϵ2 + δ1])

123451776000δ2

)
−
(
[β1β2 (1 + ϵ1 + ϵ2)]

62219695104000δ2

)
− β1ϵ2

123451776000δ1δ2
−
(

ϵ1

244944000δ1

)
−
(

[β1 (1 + ϵ1)]

123451776000δ1

)
−
(

1
244944000

)
−
(

β2

123451776000

)
,

(61)

DBG−2
twn =

(
β1

2939328000δ1

)
+

(
β2δ1

2939328000δ2

)
+

(
[β1β2 (1 + δ1)]

1481421312000δ2

)
+

(
1

5832000

)
+

(
[(β1 + β2)]

2939328000

)
+

(
β1β2

1481421312000

)
.

(62)

From the above coefficients, the evaluation of Euler’s critical buckling loads of innermost,
middle, and outer nanotube happens with the help of Eq. (30) and Eq. (9).

8.3. Explicit critical buckling load based on Petrov-Galerkin-1 method of clamped at
both ends
The determination of the innermost, middle, and outer nanotube’s Euler critical

buckling loads is computed from the Petrov-Galerkin-1 method with the help of the ap-
propriate polynomials discussed previously. The explicit expression for the coefficients
is in the form of Eq. (30) as follows,

APG−1
twn = +

216ϵ1ϵ2

π6δ1δ2
, (63)
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BPG−1
twn = −

(
864ϵ1

π4δ1

)
+

(
−54β2ϵ1

π8δ2
− 6β2ϵ1

5π4δ2
− 54β2ϵ2

π8δ2
− 6β2ϵ2

5π4δ2

)
−
(

864ϵ2

π4δ2

)
+

(
−54β1ϵ2

π8δ1δ2
− 6β1ϵ2

5π4δ1δ2
− 54β1ϵ1ϵ2

π8δ1δ2
− 6β1ϵ1ϵ2

5π4δ1δ2

)
−
(

864ϵ1ϵ2

π4δ1δ2

)
,

(64)

CPG−1
twn = +

(
3456ϵ2

π2δ2

)
+

(
216β1ϵ2

π6δ2
+

24β1ϵ2

5π2δ2
+

24β2ϵ1

5π2δ2
+

216β2ϵ1

π6δ2
+

24β2ϵ2

5π2δ2

)
+

(
216β2ϵ2

π6δ2
+

24β2δ1

5π2δ2
+

216β2δ1

π6δ2

)
+

(
27β1β2

2π10δ2
+

β1β2

150π2δ2
+

3β1β2

5π6δ2
+

27β1β2ϵ1

2π10δ2

)
+

(
β1β2ϵ1

150π2δ2
+

3β1β2ϵ1

5π6δ2
+

27β1β2ϵ2

2π10δ2
+

β1β2ϵ2

150π2δ2
+

3β1β2ϵ2

5π6δ2

)
+

(
216β1ϵ2

π6δ1δ2
+

24β1ϵ2

5π2δ1δ2

)
+

(
3456ϵ1

π2δ1

)
+

(
216β1

π6δ1
+

24β1

5π2δ1
+

216β1ϵ1

π6δ1
+

24β1ϵ1

5π2δ1

)
+

(
3456
π2

)
+

(
24β2

5π2 +
216β2

π6

)
,

(65)

DPG−1
twn =

(
−96β1

5δ1
− 864β1

π4δ1

)
+

(
−96β2δ1

5δ2
− 864β2δ1

π4δ2

)
+

(
−2β1β2

75δ2
− 12β1β2

5π4δ2

)
+

(
−54β1β2

π8δ2
− 2β1β2δ1

75δ2
− 12β1β2δ1

5π4δ2
− 54β1β2δ1

π8δ2

)
+ (−13824)

+

(
−96β1

5
− 864β1

π4

)
+

(
−96β2

5
− 864β2

π4

)
+

(
−2β1β2

75
− 12β1β2

5π4 − 54β1β2

π8

)
.

(66)

Further, the three different Euler’s critical loads for innermost, middle, and outer
nanotube are computed using the above expression using Eq. (30) and Eq. (9).

9. CLAMPED-SIMPLY SUPPORTED

The Bubnov-Galerkin-1 method uses the polynomials as

W1(X) = D1

(
1
12

X4 − 5
24

X3
+

1
8

X2
)

, (67)

W2(X) = D2

(
1
12

X4 − 5
24

X3
+

1
8

X2
)

, (68)

W3(X) = D3

(
1
12

X4 − 5
24

X3
+

1
8

X2
)

, (69)

ψ
(4)
cs (X) =

(
1
12

X4 − 5
24

X3
+

1
8

X2
)

, (70)

for the clamped-simply supported boundary conditions to evaluate the critical buck-
ling loads of triple-walled carbon nanotube. Incidentally, the following polynomials
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W1(X) = D1(−2X4
+ 3X3 −X), W2(X) = D2(−2X4

+ 3X3 −X), and W3(X) = D3(−2X4

+3X3 − X) satisfy the triple-walled carbon nanotube with clamped-simply supported
boundary condition computes the same critical buckling load results estimated by Eq. (67)
to Eq. (70). With the help of three polynomials as W1(X) = D1(5X5 − 16X4 + 14X3 − 3X),
W2(X) = D2(5X5 − 16X4 + 14X3 − 3X), and W3(X) = D3(5X5 − 16X4 + 14X3 − 3X),
the Bubnov-Galkerin-2 method helps to estimate the three critical buckling loads. The
Petrov–Galerkin method computes the critical buckling loads of triple-walled carbon
nanotube utilizing the three polynomials as W1(X) = D1(−2X4

+ 3X3 − X), W2(X) =

D2(−2X4
+ 3X3 − X), and W3(X) = D3(−2X4

+ 3X3 − X). Also, the weight function
considers in the form of ψ

(3)
cs (X) = (5X5 − 16X4 + 14X3 − 3X). If the polynomials reach

the value of W3 = 0, W1(−X), W2(−X), and c23 = 0 yield the results of double-walled
carbon nanotube’s critical buckling load results [22].

9.1. Explicit critical buckling load based on Bubnov-Galerkin-1 method of clamped-
simply supported
By following the steps from Eq. (23) to Eq. (29) with the substitution of Eq. (67) to

Eq. (70) appropriately, the explicit expression takes the form of (30) and the coefficients
are,

ABG−1
twn = −

(
ϵ1ϵ2

4741632000δ1δ2

)
, (71)

BBG−1
twn =

(
ϵ1

225792000δ1

)
+

(
[19β2(ϵ1 + ϵ2)]

1024192512000δ2

)
+

(
ϵ2

225792000δ2

)
+

(
[19β1ϵ2(1 + ϵ1)]

1024192512000δ1δ2

)
+

(
ϵ1ϵ2

225792000δ1δ2

)
,

(72)

CBG−1
twn = −

(
ϵ2

10752000δ2

)
−
(
[19β1ϵ2] + (19β2 [ϵ1 + ϵ2 + δ1])

48771072000δ2

)
−
(
[361β1β2 (1 + ϵ1 + ϵ2)]

221225582592000δ2

)
− 19β1ϵ2

48771072000δ1δ2
−
(

ϵ1

10752000δ1

)
−
(
[19β1 (1 + ϵ1)]

48771072000δ1

)
−
(

1
10752000

)
−
(

19β2

48771072000

)
,

(73)

DBG−1
twn =

(
19β1

2322432000δ1

)
+

(
β2δ1

2322432000δ2

)
+

(
[361β1β2 (1 + δ1)]

10534551552000δ2

)
+

(
1

512000

)
+

(
[19 (β1 + β2)]

2322432000

)
+

(
β1β2

10534551552000

)
.

(74)

The above expression is evaluated for the three different Euler’s critical buckling for in-
nermost, middle, and outer nanotubes, respectively, using Eq. (30) and Eq. (9).
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9.2. Explicit critical buckling load based on Bubnov Galerkin-2 method of clamped-
simply supported
For the explicit expression of the Bubnov-Galerkin-2 method with relevant polyno-

mials discussed earlier, the coefficients come in the form of the following methodology
adopted from Eq. (23) to Eq. (29),

ABG−2
twn = −

(
425259008ϵ1ϵ2

31255875δ1δ2

)
, (75)

BBG−2
twn =

(
36192256ϵ1

128625δ1

)
+

(
[4524032β2(ϵ1 + ϵ2)]

4244625δ2

)
+

(
36192256ϵ2

128625δ2

)
+

(
[4524032β1ϵ2(1 + ϵ1)]

4244625δ1δ2

)
+

(
36192256ϵ1ϵ2

128625δ1δ2

)
,

(76)

CBG−2
twn = −

(
249495552ϵ2

42875δ2

)
−
(
[10395648β1ϵ2] + (10395648β2 [ϵ1 + ϵ2 + δ1])

471625δ2

)
−
(
[433152β1β2 (1 + ϵ1 + ϵ2)]

5187875δ2

)
− 10395648β1ϵ2

471625δ1δ2
−
(

249495552ϵ1

42875δ1

)
−
(
[10395648β1 (1 + ϵ1)]

471625δ1

)
−
(

249495552
42875

)
−
(

10395648β2

471625

)
,

(77)

DBG−2
twn =

(
214990848β1

471625δ1

)
+

(
214990848β2δ1

471625δ2

)
+

(
[8957952β1β2 (1 + δ1)]

5187875δ2

)
+

(
5159780352

42875

)
+

(
[214990848 (β1 + β2)]

471625

)
+

(
8957952β1β2

5187875

)
.

(78)

The Euler’s critical buckling loads for innermost, middle, and outer nanotube for Bubnov-
Galerkin-2 methods are computed using the above expression with the help of Eq. (30)
and Eq. (9).

9.3. Explicit critical buckling load based on Petrov-Galerkin-1 method of clamped-
simply supported
The Petrov-Galerkin-1 Method with appropriate polynomials discussed previously

by computing the Eq. (23) to Eq. (30), the explicit expression is in the following form,

APG−1
twn = −

(
29791ϵ1ϵ2

42875δ1δ2

)
, (79)

BPG−1
twn =

(
84568ϵ1

6125δ1

)
+

(
[45167β2(ϵ1 + ϵ2)]

771750δ2

)
+

(
84568ϵ2

6125δ2

)
+

(
[45167β1ϵ2(1 + ϵ1)]

771750δ1δ2

)
+

(
84568ϵ1ϵ2

6125δ1δ2

)
,

(80)
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CPG−1
twn = −

(
240064ϵ2

875δ2

)
−
(
[64108β1ϵ2] + (64108β2 [ϵ1 + ϵ2 + δ1])

55125δ2

)
−
(
[68479β1β2 (1 + ϵ1 + ϵ2)]

13891500δ2

)
− 64108β1ϵ2

55125δ1δ2
−
(

240064ϵ1

875δ1

)
−
(
[64108β1 (1 + ϵ1)]

55125δ1

)
−
(

240064
875

)
−
(

64108β2

55125

)
,

(81)

DPG−1
twn =

(
181984β1

7875δ1

)
+

(
181984β2δ1

7875δ2

)
+

(
[48598β1β2 (1 + δ1)]

496125δ2

)
+

(
681472

125

)
+

(
[181984 (β1 + β2)]

7875

)
+

(
48598β1β2

496125

)
.

(82)

So the coefficients of the above expressions are solved to estimate the Euler’s critical
buckling loads of nanotube for innermost, middle, and outer nanotube with the help of
Eq. (30) and Eq. (9).

10. DISCUSSIONS

The classification of nanotubes takes place like short nanotubes (L/D < 10) [24]
or sufficiently long nanotubes (10 < L/D < 50) [24] or more. The outer diameter
of a multi-walled carbon nanotube ranges from 2 nm to 100 nm [25]. Also, the length
of multi-walled carbon nanotube varies from 0.2 µm to several µm [25] with experi-
mental observation. It corresponds to the L/D ranges from 100, 250, 1000, or higher
for the multi-walled carbon nanotubes. So the present continuum model analysis con-
siders the triple-walled carbon nanotube as a straight nanotube structure, although its
length-outer diameter ratio can be high. But, the nanotube is in a curve shape when
it is long (like hair). Based on the chiral indices (n, m) [26], the carbon nanotube is
in the form of the armchair (n, n), or zigzag (n, 0), or chiral nanotube (n ̸=m). For the
single-walled carbon nanotube, the diameter in terms of the chiral vector is defined by

Dswn =
√

3aC−C

√
n2 + nm + m2

π
[27]. For the triple-walled carbon nanotube, the chiral

indices take from as (n, m)(n, m)(n, m). In particular, the chirality of triple-walled nan-
otube (15, 16), (14, 17), and (13, 18) yields the diameter Dtwn = 14 Å. Similarly, the diam-
eter of Dtwn = 21 Å with chirality (15, 16), (14, 17) and (13, 18) is arrived. So the different
diameter of the nanotube estimates many chiral possibilities of triple-walled carbon nan-
otubes. But the continuum model used in the present buckling analysis doesn’t consider
the nanotube’s chirality effect.

The van der Waals interaction coefficient [28] of the nanotube is defined by, c(N)(N+1)

=
320×(2RN) erg/cm2

0.16a2
C−C

, aC−C = 0.142 nm, N = 1, 2. The first and second adjacent con-

centric nanotubes using the distributed springs all along the circumference [28] are mod-
eled by van der Waals interaction coefficient c12. Similarly, the second and third adja-
cent nanotube [28] experiences the effect of van der Waals interaction coefficient c23. The
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present analysis calculates the moment of inertia and cross-sectional areas using the wall
thickness of the nanotube suggested by Sears and Batra [29]. The moment of inertia [29]
of the three nanotubes such as I1, I3, and I3 is estimated using the expression in terms

of the wall thickness of the nanotube th as, Ii(th) =
π

4

[(
Ri +

th

2

)4

−
(

Ri −
th

2

)4
]

, i =

1, 2, 3. Similarly, the cross-sectional areas [29] of nanotubes A1, A2, and A3 are determined

by Ai(th) = π

[(
Ri +

th

2

)2

−
(

Ri −
th

2

)2
]

, i = 1, 2, 3. The mechanical properties of the

triple-walled nanotube are E = 1.0 TPa, R1 = 0.35 nm, R2 = 0.70 nm, R3 = 1.05 nm,
Do = 2.10 nm, th = 0.34 nm, ε2/ε1 = 1.5, δ2/δ1 = 3.27057, β2/β1 = 0.291771, c12 =
69.43 GPa and c23 = 138.86 GPa [16]. In the present investigation, the Bubnov–Galerkin
and Petrov–Galerkin methods estimate the Euler’s critical buckling of triple-walled car-
bon nanotube. For the triple-walled carbon nanotubes with simply-simply supported
boundary conditions, the accurate estimation of the Euler critical buckling is possible
using exact solutions. The Bubnov–Galerkin Method is named Bubnov-Galerkin-1 and
Bubnov-Galerkin-2 based on different polynomials in the present analysis. In addition
to these methods, the Petrov–Galerkin method determines the critical buckling load. De-
veloping the analytical solutions for triple-walled nanotube supported with the clamped-
clamped and clamped-hinged is cumbersome. So to obtain a quick and reasonably reli-
able estimation, the Bubnov–Galerkin and Petrov–Galerkin method determine the criti-
cal buckling load. All the polynomials [22] used in these methods satisfy the respective
boundary conditions.

The Bubnov–Galerkin and Petrov–Galerkin method yield three Euler critical buck-
ling loads corresponding to respective boundary conditions. Since three polynomials sat-
isfy the mathematical model, the numerical methods estimate three critical loads of buck-
ling alone. Here comes the interesting question of which numerical method estimates
better results than analytical solutions for simply-simply supported triple-walled carbon
nanotube. Table 1 to Table 3 list three critical buckling loads of triple-walled carbon nan-
otube for simply-simply supported boundary conditions. Among the three results like
Bubnov-Galerkin-1, Bubnov-Galerkin-2, and Petrov-Galerkin-1, the Bubnov-Galerkin-2
is comparable with exact solution results. So for the triple-walled carbon nanotube with
simply-simply supported boundary conditions, the Bubnov-Galerkin-2 predicts closure
results reliably. From Table 4 to Table 6, it is evident that the exact solution is not listed
for the clamped-clamped support of triple-walled nanotube. It is because finding the ex-
act solutions for triple-walled nanotube with clamped-clamped support is a tough task.
These three methods like Bubnov-Galerkin-1, Bubnov-Galerkin-2, and Petrov-Galerkin-
1, predict reliable critical buckling loads for clamped-clamped support. Similarly, for
the boundary of clamped-simply supported, Table 7 to Table 9 show the critical buck-
ling loads. Again, Bubnov-Galerkin-1, Bubnov-Galerkin-2, and Petrov-Galerkin-1 meth-
ods estimate the critical buckling loads for triple-walled carbon nanotube with clamped-
simply support in a reliable manner.
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Table 1. First Euler critical buckling loan PE
1 in nN, simply-simply supported TWCNT

L/Do 10 12 14 16 18 20

B-G-1 38.832065 26.974931 19.820904 15.176341 11.991587 9.713373
B-G-2 38.375548 26.657690 19.587761 14.997816 11.850520 9.599103
P-G 38.405651 26.678608 19.603134 15.009587 11.859821 9.606637

Exact 38.326074 26.623311 19.562497 14.978470 11.835233 9.586720

Table 2. Second Euler critical buckling loan PE
2 in nN, simply-simply supported TWCNT

L/Do 10 12 14 16 18 20

B-G-1 16194.0547 23300.8321 31704.1697 41402.6500 52395.5968 64682.6542
B-G-2 16241.3171 23369.1092 31797.2302 41524.2793 52549.5883 64872.8057
P-G 16239.9778 23367.1660 31794.5769 41520.8084 52545.1919 64867.3755

Exact 16243.5254 23372.3128 31801.6045 41530.0015 52556.8364 64881.7581

Table 3. Third Euler critical buckling loan PE
3 in nN, simply-simply supported TWCNT

L/Do 10 12 14 16 18 20

B-G-1 42621.7820 61354.5922 83498.2987 109051.3209 138012.9044 170382.6518
B-G-2 42746.7303 61534.7623 83743.6729 109371.9001 138418.6983 170883.6749
P-G 42743.1726 61529.6231 83736.6684 109362.7454 138407.1079 170869.3630

Exact 42752.5958 61543.2351 83755.2208 109386.9928 138437.8066 170907.2701

Table 4. First Euler critical buckling loan PE
1 in nN, clamped-clamped supported TWCNT

L/Do 10 12 14 16 18 20

B-G-1 152.918292 106.364244 78.198875 59.890951 47.329625 38.340873
B-G-2 162.700689 113.163038 83.195627 63.717229 50.353125 40.790033
P-G 152.943073 106.372515 78.202150 59.892420 47.330349 38.341258

Table 5. Second Euler critical buckling loan PE
2 in nN, clamped-clamped supported TWCNT

L/Do 10 12 14 16 18 20

B-G-1 12262.9236 17584.8768 23892.0496 31178.7615 39442.3216 48681.3185
B-G-2 13444.5567 19281.7298 26198.9167 34190.0774 43252.3500 53384.2332
P-G 12930.5037 18546.2099 25200.5360 32887.8068 41605.3328 51351.7031
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Table 6. Third Euler critical buckling loan PE
3 in nN, clamped-clamped supported TWCNT

L/Do 10 12 14 16 18 20

B-G-1 32153.9447 46219.5201 62862.0174 82075.1518 103855.9331 128202.7896
B-G-2 35257.1342 50682.8712 68934.0773 90004.0682 113889.6632 140589.1903
P-G 33912.5702 48751.9504 66308.9392 86577.2548 109553.9076 135237.3262

Table 7. First Euler critical buckling loan PE
1 in nN, clamped-simply supported TWCNT

L/Do 10 12 14 16 18 20

B-G-1 81.479486 56.624659 41.614903 31.866280 25.180343 20.397025
B-G-2 80.229103 55.760059 40.980855 31.381271 24.797308 20.086851
P-G 77.100166 53.580757 39.377714 30.153116 23.826599 19.300431

Table 8. Second Euler critical buckling loan PE
2 in nN, clamped-simply supported TWCNT

L/Do 10 12 14 16 18 20

B-G-1 14133.0340 20312.4462 27624.6933 36066.7837 45637.2936 56335.4746
B-G-2 12591.3063 18092.9441 24604.0484 32121.6703 40644.4070 50171.5212
P-G 13532.5655 19449.8759 26451.8655 34535.7039 43700.0438 53944.1772

Table 9. Third Euler critical buckling loan PE
3 in nN, clamped-simply supported TWCNT

L/Do 10 12 14 16 18 20

B-G-1 37150.7365 53453.4092 72730.5728 94978.9001 120196.8047 148383.4518
B-G-2 33090.5900 47607.4570 64773.9678 84586.8444 107044.5242 132146.1848
P-G 35573.2171 51184.1287 69643.1987 90947.2790 115094.8684 142085.1771

Fig. 1 shows the effect of L/Do ratio over the first Euler buckling load PE
1 for three

different boundary conditions of the triple-walled carbon nanotube. For the increase in
the L/Do ratio, the buckling load PE

1 decreases. It implies that for a shorter length of
the nanotubes, the first critical load PE

1 is predominant compared to triple-walled nan-
otubes with longer lengths. This phenomenon happens in all three boundary condi-
tions, namely clamped-clamped, clamped-simply and simply-simply supported. From
Fig. 2 the second critical buckling load P2 increases along with L/Do ratio increment.
It happens because the Euler’s critical load depends on the length of the triple-walled
nanotube. But the critical buckling load PE

2 behaves entirely different from PE
1 for three

different boundary conditions. The same behaviour (Fig. 3) occurs for the third Euler
critical buckling load PE

3 of triple-walled carbon nanotube for simply-simply, clamped-
simply, and clamped-clamped support. Fig. 4 to Fig. 6 reveal the behavior of Euler’s
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Fig. 1. Euler’s first critical buckling loads for
different boundary conditions vary with

an aspect ratio
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Fig. 2. Euler’s second critical buckling loads
for different boundary conditions vary with an

aspect ratio
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Fig. 3. Euler’s third critical buckling loads for
different boundary conditions vary with

an aspect ratio

20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

L/Do

E
u
le
r
B
u
ck
li
n
g
L
oa
d
(n
N
)

 

 

Mode1

Mode2

Mode3

Fig. 4. First three modes of Euler’s critical
buckling loads for simply-simply boundary

conditions vary with an aspect ratio

critical buckling load over the increase in L/Do ratio of the first, second, and third mode
for a triple-walled carbon nanotube. The first mode interprets the fundamental buck-
ling mode, which is the smallest buckling load among the three buckling loads. Inter-
estingly, the fundamental Euler critical buckling mode decreases with the increase in
the L/Do ratio. This phenomenon happens in all three boundary conditions: Simply-
simply, clamped-clamped, and clamped-simply support. Further, the higher modes like
second and third buckling modes increase with the increase in the L/Do ratio for all the
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Fig. 5. First three modes of Euler’s critical
buckling loads for clamped-clamped bound-

ary conditions vary with an aspect ratio
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Fig. 6. First three modes of Euler’s critical
buckling loads for clamped-simply boundary

conditions vary with an aspect ratio

boundary conditions like Simply-simply, Clamped-clamped, and Clamped-simply sup-
port. The higher modes behave entirely differently from the fundamental buckling mode
for all three boundary conditions.

11. CONCLUSIONS

The present investigation estimates the Euler’s critical buckling load using the math-
ematical model of a triple-walled carbon nanotube with a buckling effect. The Bubnov–
Galerkin and Petrov–Galerkin methods determine the critical load of triple-walled nan-
otube quickly in a reliable manner for three different boundary conditions; namely,
simply-simply, clamped-clamped, and clamped-simply supported. Two different numer-
ical methods, namely Bubnov–Galerkin and Petrov–Galerkin method, determine the crit-
ical buckling load of triple-walled nanotube quickly in a reliable manner. For the incre-
ment of length from shorter to longer nanotube, the buckling load PE

1 decreases with the
increment in length for three different boundary conditions, respectively. But the critical
buckling loads of triple-walled nanotube called PE

2 and PE
3 increase for longer nanotubes

in comparison with short nanotubes. So the first critical buckling load PE
1 behaves en-

tirely different from the second and third critical buckling load, namely PE
2 and PE

3 . The
two approximate methods, namely, Bubnov–Galerkin and Petrov–Galerkin method, are
useful in obtaining quick and reliable results for triple-walled carbon nanotubes.
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