Expression analysis of genes encoding salt induced transport proteins in two contrasting rice cultivars with different salt stress tolerance


Authors

  • Duc Quan Nguyen Institute of Genome Research - Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Vietnam https://orcid.org/0000-0002-8152-5700
  • Thi Huong Giang Tran Institute of Genome Research - Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Vietnam
  • Huu Dung Do Institute of Genome Research - Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Vietnam
  • Huy Hoang Nguyen Institute of Genome Research - Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Vietnam
DOI: https://doi.org/10.15625/2615-9023/18301

Keywords:

Oryza sativa, Doc Phung, IR28, salt stress, transport proteins, gene expression.

Abstract

Soil salinization is a serious global problem that impedes the growth and development of numerous agricultural crops worldwide. Plants have evolved a diversity of adaptive mechanisms for coping with salt stress. Among the known mechanisms, the ability of plants to maintain intracellular ions and osmotic homeostasis via exclusion and compartmentalization of salt is highly correlated with high salt stress tolerance. Several transport proteins, such as high-affinity K+ transporter 1 (HKT1), high affinity K+/Na+ transporter 10 (HAK10), salt overly sensitive 1 (SOS1), and sodium/hydrogen exchanger 1 (NHX1), have been identified to be associated with the exclusion and compartmentalization of salt. In this study, an investigation was conducted to evaluate the expression of genes encoding SOS1, HKT1, HAK10, and NHX1 transporters in the leaf and root tissues of two contrasting rice cultivars, salt tolerant DP and salt sensitive IR28, under salt stress of 150 mM NaCl by RT-qPCR approach. RT-qPCR data revealed that the expression of HKT1, HAK10, SOS1, and NXH1 were upregulated at a higher level in the DP cultivar than in the IR28 cultivar in response to salt stress treatment. Our findings also suggest that the DP rice cultivar acquires a higher level of salt tolerance than the IR28 cultivar, at least a part due to a greater degree of Na+ exclusion and compartmentalization mechanisms provided by HKT1, HAK10, SOS1, and NXH1 transporters.

References

Ali A., Maggio A., Bressan R. A. and Yun D. J., 2019. Role and functional differences of HKT1-type transporters in plants under salt stress. Int. J. Mol. Sci., 20: 1−12. http://doi.org/10.3390/ijms20051059

FAO, 2018. Handbook for saline soil management. FAO: 1–144.

Farooq M., Park J. R., Jang Y. H., Kim E. G. and Kim K. M., 2021. Rice cultivars under salt stress show differential expression of genes related to the regulation of Na+/K+ balance. Front. Plant Sci., 12: 680131. http://doi.org/10.3389/fpls.2021.680131

Fogliatto S., Serra F., Patrucco L., Milan M. and Vidotto F., 2019. Effect of different water salinity levels on the germination of imazamox-resistant and sensitive weedy rice and cultivated rice. Agronomy, 9: 658−671. http://doi.org/10.3390/agronomy9100658

Hossain M., 2019. Present scenario of global salt affected soils, its management and importance of salinity research. Int. Res. J. Biol. Sci., 1: 1−3.

Imran S., Horie T. and Katsuhara M., 2020. Expression and ion transport activity of rice OsHKT1;1 variants. Plants, 9: 1−12. http://doi.org/10.3390/plants9010016

Isayenkov S. V. and Maathuis F. J. M., 2019. Plant salinity stress: many unanswered questions remain. Front. Plant Sci., 10: 80−91. http://doi.org/10.3389/fpls.2019. 00080

Jaime-Pérez N., Pineda B., García-Sogo B., Atares A., Athman A., Byrt C. S., Olías R., Asins M. J., Gilliham M., Moreno V. et al., 2017. The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity. Plant Cell Environ., 40: 658−671. http://doi.org/10.1111/pce. 12883

Kamran M., Parveen A., Ahmar S., Malik Z., Hussain S., Chattha M. S., Saleem M. H., Adil M., Heidari P. and Chen J. T., 2020. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int. J. Mol. Sci., 21: 148−175. http://doi.org/10.3390/ijms2101 0148

Kumar S., Kalita A., Srivastava R. and Sahoo L., 2017. Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Front. Plant Sci., 8: 1−18. http://doi.org/10.3389/fpls.2017.01 896

Livak K. J. and Schmittgen T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 25: 402−408. http://doi.org/http://dx.doi.org/10.1006/meth.2001.1262

Lotkowska M. E., Tohge T., Fernie A. R., Xue G. P., Balazadeh S. and Mueller-Roeber B., 2015. The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol. 169: 1862−1880. http://doi.org/10.1104/pp.15.00605

Muchate N. S., Nikalje G. C., Rajurkar N. S., Suprasanna P. and Nikam T. D., 2016. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot. Rev., 82: 371−406. http://doi.org/10.1007/s12229-016-9173-y

Munns R. and Tester M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59: 651−681. http://doi.org/10.1146/ annurev.arplant.59.032607.092911

Neves G. Y. S., Marchiosi R., Ferrarese M. L. L., Siqueira-Soares R. and Ferrarese-Filho O., 2010. Root growth inhibition and lignification induced by salt stress in soybean. J. Agron. Crop Sci., 196: 467−473. http://doi.org/10.1111/j.1439-037X.2010.00432.x

Nguyen D. Q., Nguyen N. L., Nguyen V. T., Tran T. H. G., Nguyen T. H., Nguyen T. K. L. and Nguyen H. H., 2023. Comparative analysis of microRNA expression profiles in shoot and root tissues of contrasting rice cultivars (Oryza sativa L.) with different salt stress tolerance. PLoS One, 18: e0286140. http://doi.org/10.1371/journal.pone.0286140

Rolly N. K., Imran Q. M., Lee I. J. and Yun B. W., 2020. Salinity stress-mediated suppression of expression of salt overly sensitive signaling pathway genes suggests negative regulation by AtbZIP62 transcription factor in Arabidopsis thaliana. Int. J. Mol. Sci., 21: 1−17. http://doi.org/10.3390/ijms21051726

Shahid S. A., Zaman M. and Heng L., 2018. Soil salinity: historical perspectives and a world overview of the problem. Springer Int. Publishing: 43−53. http://doi.org/ 10.1007/978-3-319-96190-3_2

Sharwood R. E., Sonawane B. V. and Ghannoum O., 2014. Photosynthetic flexibility in maize exposed to salinity and shade. J. Exp. Bot. 65: 3715−3724. http://doi.org/10.1093/jxb/eru130

Sui N., Yang Z., Liu M. and Wang B., 2015. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics, 16: 534−552. http://doi.org/10.1186/s12864-015-1760-5

Wang H., Zhang M., Guo R., Shi D., Liu B., Lin X. and Yang C., 2012. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol., 12: 194−205. http://doi.org/10.1186/1471-2229-12-194

Wang L., Liu Y., Li D., Feng S., Yang J., Zhang J., Zhang J., Wang D. and Gan Y., 2019. Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC Plant Biol., 19: 357−372. http://doi.org/10.1186/s12870-019-1963-z

Wang Q., Ni L., Cui Z., Jiang J., Chen C. and Jiang M., 2022. The NADPH oxidase OsRbohA increases salt tolerance by modulating K+ homeostasis in rice. Crop J., 10: 1611−1622. https://doi.org/ 10.1016/j.cj.2022.03.004

Zhang H. H., Xu N., Wu X., Wang J., Ma S., Li X. and Sun G., 2018. Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. J. Plant Int., 13: 506−513. http://doi.org/10.1080/17429145.2018.1526978

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Abstract View: 60
PDF Downloaded: 42

Published

29-09-2023

How to Cite

Nguyen, D. Q., Tran , T. H. G., Do, H. D., & Nguyen, H. H. (2023). Expression analysis of genes encoding salt induced transport proteins in two contrasting rice cultivars with different salt stress tolerance. Academia Journal of Biology, 45(3), 59–67. https://doi.org/10.15625/2615-9023/18301

Issue

Section

Articles

Most read articles by the same author(s)